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why ππ scattering?

• resonances are unstable hadronic excitations

• testbed for interpretation of finite-volume spectrum

• hadronic vacuum polarization important uncertainty
in (a− 2)µ

• optical theorem

ImΠ(s) =
α(s)

3
R(s), R(s) ∝ σtot(e

+e− → hadrons)

• at low energies, dominated by the timelike pion form factor

R(s) =
1

4

(
1− 4m2

π

s

) 3
2

|Fπ(s)|2 , 4m2
π < s < 9m2

π

[Jegerlehner, Nyffeler ’09]
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lüscher method

• relation between FV spectrum and scattering amplitude
[Lüscher ’90, ’91; Rummukainen, Gottlieb ’95]

[Kim, Sachrajda, Sharpe ’05]

• quantization condition of the form

det [1 + F (S − 1)] = 0

• simplest case: single channel, no higher partial waves
→ one-to-one mapping
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scattering states

• required Wick contractions

t0tf t0tf t0tf

+ 6 more

• need to give definite momentum to all hadrons

• requires all-to-all propagators, but inversions of Dirac
matrix are computationally expensive
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all-to-all propagators

• two key insights:
1. important physics is captured by a low-dimensional
subspace

→ distillation

2. achievable overall accuracy is limited by finite sampling of
the path integral

→ stochastic estimators
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distillation

• important contributions to the quark propagator are
encoded in smaller subspace [Peardon et al ’08]

−∆vn = λnvn

• spanned by Nev ≪ 12× L3 eigenvectors of covariant 3D
Laplace operator

• for constant physical smearing

Ninv ∝ Nev ∼ V

6/19



stochastic estimation

• use stochastic estimation in the low-dimensional
subspace [Morningstar et al ’11]

• for random noise vectors η(r)i ∈ Z4, i = 1, . . . , Nev

M ′
ij
−1

= lim
Nη→∞

1

Nη

Nη∑
r=1

X
(r)
i η

(r)∗
j , whereM ′X(r) = η(r)

• variance reduction using dilution [Foley et al ’05]

• flat volume scaling observed so far

Ninv ∝ Ndil = const
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case study

Anisotropic Wilson clover [HadSpec ’09]

323 × 256,mπ ≈ 240 MeV, as ≈ 0.12 fm, L ≈ 4 fm
as/at ≈ 3.44

→ large L, good temporal resolution
mπT ≈ 10

→ safe from thermal effects

• ππ results from HadSpec collaboration [Wilson et al ’15]

• exact distillation requires ~170 times as many inversions
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energy level extraction

Monitor stability across

• fixed GEVP diagonalization times (t0, td)
• number of low-lying operators included in GEVP
• different fit models

9/19



spectrum
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p3 cot δ1 = (m2
r − s)

6π

g2ρππ

√
s Breit-Wigner fit

gρππ = 5.99(24),
mr

mπ
= 3.350(24),

χ2

d.o.f.
= 1.04
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• stochastic method reproduces the ρ-resonance

• same-ensemble results from the HadSpec collaboration
[Wilson et al ’15]

gdist.ρππ = 5.688(75)

gsLapHρππ = 5.99(24)

• threefold error reduction with exact distillation, but 170
times the cost

• towards the chiral limit with constant mπL

→ another factor of 23 in computational cost
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• next step: more systematic study of pion-mass
dependence, cutoff effects

• Coordinated Lattice Simulations
• ~30-40 researchers at ~15 institutions across the EU
• ~100-200 M core-h on EU supercomputers

• different regularization
→ simplifies renormalization of composite operators

CLS N200 [Bruno et al ’14]

L3 × T = 483 × 128, open temporal BC
mπ ≈ 280MeV, mK ≈ 460MeV, a ≈ 0.064 fm

mπL ≈ 4.4, 2mK/mπ ≈ 3.3
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p3 cot δ1 = (m2
r − s)

6π

g2ρππ

√
s Breit-Wigner fit

gρππ = 5.68(24),
mr

mπ
= 2.745(24),

χ2

d.o.f.
= 1.2
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Timelike pion form factor [Meyer ’12; Feng et al ’15]

|Fπ(s)|2 =
3πs

2L3p5
g(γ)

(
qϕ′(q) + p

∂δ1(p)

∂p

) ∣∣∣⟨0|V (d,Λ)|d,Λ, n⟩
∣∣∣2

• extract energy levels for given momentum d and irrep Λ

• use all levels across all irreps to map out the phase shift
δ1(p) and parametrize it

• compute ϕ′(q) for each energy level numerically

• extract the finite volume current matrix element
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Timelike pion form factor [Meyer ’12; Feng et al ’15]

|Fπ(s)|2 =
3πs

2L3p5
g(γ)

(
qϕ′(q) + p

∂δ1(p)

∂p

) ∣∣∣⟨0|V (d,Λ)|d,Λ, n⟩
∣∣∣2

Wilson fermions — V (d,Λ) linear combinations of

V (imp,ren)
µ = ZV (1 + bV am)

(
ψ̄γµψ + iacV ∂ν

{
ψ̄σµνψ

})

• nonperturbative multiplicative renormalization ZV

[M. Dalla Brida]

• perturbative O(a) improvement coefficient
[Aoki, Frezzotti, Weisz ’98]
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• quark propagator has outer-product formM−1 = Xη†

η̄

η

X̄

X

t0tf

V Ōn

• use γ5-hermiticity to switch source and sink→ η̄, X̄

• compute current sink functions right after inversions,
before smearing the quark sinks
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• curve is the Gounaris-Sakurai parametrization of |Fπ(s)|2

• no fit — prediction using the values of mr and gρππ from
the phase shift analysis
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(not even) a first look

I = 0, d = (0, 0, 1), A+
1 — isoscalar scalar
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conclusion

• stochastic LapH method sufficiently precise for
determination of scattering amplitudes

• suitable for large-scale CLS ensembles
• control systematic effects: (mπ, L, a)
• simplified renormalization

→ access to transition amplitudes

• challenges:
• I = 0 ππ, meson-baryon scattering
• photo-production amplitudes
• three-particle states — recent theoretical advances

[Hansen ’15]

19/19



temporal boundary effects

• boundary effects expected to decay as e−2mπt near the
chiral limit [Bruno et al ’15]

• we do see large boundary effects in the spectrum of the
lattice Laplacian
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Figure 1: Smallest and largest retained EV of the lattice Laplacian
normalized by their plateau average (Ncfg = 26). Lowest EV offset for
legibility.
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