CMS-TOTEM Precision Proton Spectrometer: Status and Physics Prospects

Michele Gallinaro LIP Lisbon October 28, 2015 Introduction Physics motivation ✓ Detector performance Physics case: WW production Tracking and timing detectors Summary

Introduction

CERN European Organization for Nuclear Research CE Organisation européenne pour la recherche nucléaire

CMS-TDR-01 CMS-TDR-01 TOTEM-TDR-00 5 September 201

CMS-TOTEM

TECHNICAL DESIGN REPORT FOR CMS-TOTEM PRECISION PROTON SPECTROMETER

https://indico.cern.ch/event/334693/

- Sep. 2013: CMS approves PPS program
- Dec. 2013: Approval of CMS-TOTEM MoU
- Sep. 2014: TDR published
 - baseline design and alternative future solutions
- Dec. 2014: Project approved by LHCC and Cern Research Board

Detector concept

- The CMS-Totem Precision Proton Spectrometer (CT-PPS) will allow precision proton measurement in the very forward region on both sides of CMS in standard LHC running conditions
- Proton spectrometer uses machine magnets to bend protons
- Two stations for tracking detectors and two stations for timing detectors installed at ~205-215 m from the IP (on both sides)

3

Experimental challenges

- Ability to operate the detectors close to beam (15-20σ) to maximize acceptance for low momentum loss (ξ) protons
- Limit RF impedance introduced by beam pockets
 - improved RF shielding of RPs
 - R&D on Movable Beam Pipe as future option
- Sustain high radiation levels
 - For 100/fb, proton flux up to 5x10¹⁵cm⁻² in tracking detectors, 10¹²n_{eq}/cm² and 100Gy in photosensors and readout electronics
- Reject background in the high-pileup (μ =50) of normal LHC running

Experimental challenges (cont.)

Time of flight vs z-vertex

⇒use timing information to reject pileup

(time difference of two protons is correlated with vertex position)

Central Exclusive Production (CEP)

 $pp \rightarrow p+X+p$

X is a state measured in the central region

- X: $\mu^+\mu^-$, Z, ZZ, jets
- +: rapidity gap
- i,j: only photon and gluon exchanges are allowed

4-momentum of X fully constrained by the two proton kinematics

- ξ: proton fractional momentum loss
- t: 4-momentum transferred squared

Physics motivations

- LHC used as photon-photon collider
 - -Measure $\gamma\gamma{\rightarrow}W^+W^{\scriptscriptstyle -},~e^+e^{\scriptscriptstyle -},~\mu^+\mu^{\scriptscriptstyle -},~\tau^+\tau^{\scriptscriptstyle -}$
 - Search for anomalous quartic gauge couplings (AQGCs) with improved sensitivity
 - Search for SM forbidden ZZyy, yyyy couplings
- QCD physics
 - -Exclusive 2- and 3-jet events, M up to ~700-800 GeV
 - Tests of pQCD mechanisms of exclusive production
 - -Gluon jet samples with small component of quark jets
- BSM: search for New Physics
 - -Clean events (no underlying pp event)
 - -Independent mass measurement from pp system
 - -Search for new resonances

7

Detector performance: acceptance

Acceptance: X vs Y (includes ξ ,t ellipses) •Particle gun (t, ξ , ϕ) based on HECTOR at \sqrt{s} = 13 TeV

z=204m (X as of CMS)

M. Gallinaro - "CMS-TOTEM Precision Proton Spectrometer" - LHCFwd - CERN, Oct. 28, 2015

Detector: mass resolution

- Mass acceptance and resolution vs M_X
- PPS selects exclusive systems in 300-1700 GeV range (ε>5%)
- At 15σ acceptance larger by a factor of two (wrt 20σ) for lower masses
- Mass resolution ~1.5% at 500 GeV

M. Gallinaro - "CMS-TOTEM Precision Proton Spectrometer" - LHCFwd - CERN, Oct. 28, 2015

Detector occupancy

- Occupancy of time-of-flight detectors at 15σ
 - Inefficiency due to overlapping hits (of up to ~40%)
 - Beam related bkg and pileup interactions included
- Particle multiplicity (WW signal including pileup μ =50)

M. Gallinaro - "CMS-TOTEM Precision Proton Spectrometer" - LHCFwd - CERN, Oct. 28, 2015 10

Physics prospects

- Study quartic gauge couplings
- CEP production of WW pairs
- Triple (WW γ) and quartic (WW $\gamma\gamma$) gauge couplings

Measurements can show deviation from SM

WW production

Study of process: pp→pWWp

- Clean process: W in central detector and "nothing" else, intact protons can be detected far away from IP
- Exclusive production of W pairs via photon exchange: QED process, cross section well known p
- Backgrounds:
 - -inclusive WW, $\tau\tau$, exclusive two-photon $\gamma\gamma \rightarrow II$, etc.
- Events:
 - -WW pair in central detector, leading protons in PPS
- SM observation of WW events
- Anomalous coupling study
 - -AQGCs predicted in BSM theories
 - -parameters: a_0^W/Λ^2 , a_C^W/Λ^2

p

WW production: Selection CMS-FSQ-13-008

W

- Dilepton decay channel (diff. flavor)
 –OS leptons (p_T>20GeV, |η|<2.4)
 - -No extra tracks from vertex
 - -M_{II}>20 GeV
 - –Use $p_T(\mu e)$ to discriminate
- SM signal region -p_T(μe)>30 GeV
- AGQC search -p_T(μe)=30-130GeV -p_T(μe)>130 GeV

WW production: Results CMS-FSQ-13-008

Cross section measurement

 $\sigma_{\rm meas} = 12.3^{+5.5}_{-4.4} {\rm ~fb}$

- SM prediction is σ =6.9±0.6 fb
- Observed significance above background-only hypothesis: 3.6σ

sample	yields
inclusive WW	$2.0{\pm}0.4$
$\gamma\gamma \to \tau\tau$	$0.9{\pm}0.2$
$\text{DY} \rightarrow \tau \tau$	0
diffractive WW	$0.1{\pm}0.1$
others	$0.5{\pm}0.2$
total backgrounds	$3.5{\pm}0.5$
signal (SM exclusive $pp \rightarrow WW$)	$5.3{\pm}0.1$
data	13

AQGC results

-95%CL limits on a_{C}^{W}/Λ^{2} , a_{C}^{W}/Λ^{2}

 Improvement of two orders of magnitude over LEP/Tevatron

Prospects with CT-PPS

Exclusive WW

- –quartic gauge boson coupling WW $\gamma\gamma$
- -sensitivity to anomalous couplings

Exclusive dijets

- -high jet p_T events (M_{jj} up to~400-500 GeV)
- -test of pQCD mechanism of exclusive production

Study of WW production

Event selection

- -W pair in central detector
- -leading protons in PPS
- -study $e\mu$ final state

• Two steps:

- -SM production of WW production
- -Anomalous couplings
- Simulation/framework
 - -Signal: FPMC generator
 - -Backgrounds: incl. WW, SD, DPE, multijet QCD, excl. $\gamma\gamma \rightarrow \tau\tau$
 - -Pileup (25 and 50 PU)
 - -GEANT4 simulation (central detector)
 - -Fast simulation of CT-PPS
 - -Beam induced backgrounds

M. Gallinaro - "CMS-TOTEM Precision Proton Spectrometer" - LHCFwd - CERN, Oct. 28, 2015 16

Kinematical distributions

- SM vs AQGC: missing mass provides good separation
- Information from PPS

Kinematical distributions (cont.)

- Multiplicity of "extra tracks" associated to dilepton vertex
- Requiring <10 tracks keeps 80% of signal, 5% of bkg

M. Gallinaro - "CMS-TOTEM Precision Proton Spectrometer" - LHCFwd - CERN, Oct. 28, 2015

Yields vs distance to beam

Potential enhancement of sensitivity with closer approach:

- Signal yield grows by ~x2 when going from 15 σ to 10 σ
- Background is more or less flat

M. Gallinaro - "CMS-TOTEM Precision Proton Spectrometer" - LHCFwd - CERN, Oct. 28, 2015 19

AQGC expected limits

CT-PPS project

- Exploratory phase (2015-2016)
 - –RP insertions commissioning at low β^* and high beam intensity
 - -Establish regular RP insertions for physics during fills
 - -Install detectors, commissioning
- Demonstrate that CT-PPS does not prevent stable operation of LHC beams, does not affect luminosity performance

Components installed in tunnel

CT-PPS timina CT-PPS tracking 2

All services are installed (cables, cooling, etc.)

TCL4 &TCL6 in 4-5 and 5-6 Electrical patch panel Service lines for LV/HV/DAQ CT-PPS specific:

- 2 RP box with RF shield in 4/5
- 2 RP box with RF shield in 5/6
- 1 RP cylinder in 4/5
- 1 RP cylinder in 5/6

RP insertion tests

- RP insertion tests at high luminosity in preparation for 2016
- Goal: establish RP insertions for physics operation in all regular fills
- Problems experienced in 2012
 - Impedance heating, outgassing, vacuum deterioration, amplification of collision debris
- Improvements:
 - New ferrite material (higher Curie temperature)
 - Ferrite bake-out at 1,000C (less outgassing)
 - -RF shielding (impedance reduction)
 - Cylindrical RP geometry
- Study beam losses and interplay with TCLs

RP insertion tests (cont.)

- Several insertions up to 25σ

- BLM response: linear with luminosity
- -Vacuum pressure and temperature
- No beam instabilities introduced
- ⇒extrapolation to 10³⁴: no problems expected
- \bullet Next challenge is to go closer 20 σ

Sector 5-6

(see M. Deile's presentation)

Tracking detectors

- Position and angle, combined with beam magnets, allow to determine momentum of scattered proton
 - Position resolution: ~10 μm
 - Angular resolution: ~1-2 μrad
- Slim edges on side facing beam
 - dead region: ~200 μm
- Tolerance to inhomogeneous irradiation

 approx 2x10¹⁵ n_{eq}/cm² close to beam (for 100/fb)
- Baseline: 3D silicon pixel detectors

Tracking detectors (cont.)

Sensors

- 3D silicon pixel sensors
 - -slim edges 200um
 - -2 readout electrodes per pixel (2E)
- Front-end readout chip
- PSI46dig ROC, with same readout as Phase I CMS upgrade pixel system
 - existing CMS DAQ components and software can be reused
- 6 detector planes per station
 - -detectors are tilted (reduce inefficiency)
 - -number of planes provide redundancy

26

Tracking detectors: schedule

Sensors:

- 3D silicon pixel sensors in production
- To be delivered soon (4wks, year-end)

Front-end chips:

- Two wafers of ROCs sent: mean yield ~91%, a total of ~400 good ROCs. Bonding soon to start.
- Delivery expected 3 months later

Timing detectors

- Proton timing measurement from both sides of CMS allows to determine the primary vertex, correlate it with the central detector's, reject pileup
 - Time resolution 10ps→2mm
 - Reasonable segmentation
 - Radiation hard
 - Minimize impact on beam

Timing detectors (cont.)

- Cerenkov light in quartz radiator bars
- Quartic module:
 - -20 (4x5) 3x3 mm² L-shaped bar elements
 - –bars separated by 100 μ m (total internal reflection)
- Two modules in one RP
- Beam tests: σ ~30ps (~20ps for two in-line)
- Readout electronics:

29

Timing detector R&D

Solid state as possible alternative

• Diamonds, silicon-based, etc.

Challenges

- Radiation-hardness
- Fast signals
- Finer segmentation reducing channel occupancy
- Thin and light, allow multiple layers N
 - reducing nuclear interaction
 - Time resolution ~1/sqrt(N)

Timing detector R&D (cont.)

GasToF system

- Prototype test ongoing
 Diamond detectors
- 50 ps resolution with 4 planes
 Silicon detectors
- Ultra-Fast Silicon Detectors
- Hyper-Fast Silicon detectors

M. Gallinaro - "CMS-TOTEM Precision Proton Spectrometer" - LHCFwd - CERN, Oct. 28, 2015

Test beam

- E=180 GeV protons
- Divergence: 40-250 mrad
- Rate 5-10KHz/cm²/spill

S1 and S2 (trigger area ~2x2 cm²) Tracker_{S1}

Tracker externally triggered by

H8C Beam

• Triggers:

- scintillator (4.5x4.5mm²) and diamond (20x20mm²)
- Quartic:
 - Integration of two modules in RPs
 - 1st test of electronics readout chain
- GasToF:
 - readout MCP+Nino+HPTDC

- Data-taking
 - With no-beam: threshold scan
 - With beam: threshold voltage, diamond/ scintillator trigger, position scan

M. Gallinaro - "CMS-TOTEM Precision Proton Spectrometer" - LHCFwd - CERN, Oct. 28, 2015

Summary

- CT-PPS will allow precision proton measurement in the very forward region on both sides of CMS
- A new tool to enhance the potential for BSM searches
 - Improves sensitivity to SM and BSM physics
- Studied physics and detector performance
 - -Timing resolutions of 10ps and 30ps
 - –Distance from beam at 15 σ and 20 σ
- Tracking and timing detector options (baseline vs R&D)
- Experimental challenges are being addressed
- Exploratory/consolidation phase in 2015-2016 and beyond
- Program is progressing

⇒Rich physics program with emphasis on BSM searches

Radiation levels

Radiation levels in detector studied using Totem data and simulation

Per 100 fb⁻¹:

- Proton flux up to 5x10¹⁵ cm⁻² in pixel detectors
- 10¹² neq/cm² and 100 Gy in photosensors and readout electronics

Yields (in fb)

- Select WW events
- Apply central lepton and PPS acceptance cuts
- Additional timing and track multiplicity cuts
- Inefficiency due to overlapping hits in timing detectors is taken into account
- Number in parenthesis are for time resolution of 30ps

Selection	Cross section (fb)							
	exclusive WW	exclusive WW	inclusive WW	exclusive $ au au$				
		(incorrectly reconstructed)						
generated $\sigma \times \mathcal{B}(WW \to e\mu \ \nu \bar{\nu})$	0.86 ± 0.01	N/A	2537	$1.78 {\pm} 0.01$				
≥ 2 leptons ($p_{\rm T}>20$ GeV, $\eta<2.4)$	$0.47 {\pm} 0.01$	N/A	1140±3	$0.087 {\pm} 0.003$				
opposite sign leptons, "tight" ID	$0.33 {\pm} 0.01$	N/A	776±2	$0.060 {\pm} 0.002$				
dilepton pair $p_{\rm T} > 30~{\rm GeV}$	0.25 ± 0.01	N/A	534±2	$0.018 {\pm} 0.001$				
protons in both PPS arms (ToF and TRK)	0.055 (0.054)±0.002	0.044 (0.085)±0.003	11 (22)±0.3	0.004 ± 0.001				
no overlapping hits in ToF + vertex matching	0.033 (0.030)±0.002	0.022 (0.043)±0.002	8 (16)±0.2	0.003 (0.002)±0.001				
ToF difference, $\Delta t = (t_1 - t_2)$	0.033 (0.029)±0.002	0.011 (0.024)±0.001	0.9 (3.3)±0.1	0.003 (0.002)±0.001				
$N_{ m tracks} < 10$	0.028 (0.025)±0.002	0.009 (0.020)±0.001	0.03 (0.14)±0.01	$0.002 {\pm} 0.001$				

M. Gallinaro - "CMS-TOTEM Precision Proton Spectrometer" - LHCFwd - CERN, Oct. 28, 2015 36

Beam optics

- HECTOR, a fast simulator for particle transport in a beam-line
- Full transport line simulation

37

Horizontal distance to beam center in the z-range of the PPS detectors

Yields per 1/fb – Pileup=50

Selection	Exclusive dijets		DPE		SD		Inclusive dijets	
	events	ε (%)	events	ε (%)	events	ε (%)	events	ε (%)
total number of events	652±7	100	$290 imes 10^3$	100	$2.6 imes10^6$	100	$2.4 imes10^{10}$	100
≥ 2 jets ($p_{\rm T}$ >100 GeV, $ \eta <2.0)$	287±5	44	$36 imes 10^3$	12.2	$270 imes 10^3$	10	$4.4 imes 10^8$	1.8
PPS tagging (fiducial)	77±3	12	$23 imes 10^3$	7.8	$39 imes 10^3$	1.5	$0.5 imes 10^8$	0.2
no overlap hits in ToF detectors	54±2	8	$18 imes 10^3$	6.3	$25 imes 10^3$	1.2	$0.3 imes 10^8$	0.12
ToF difference, Δt	32 (27)±2	5	$14(11) \times 10^{3}$	4.8	$6 imes 10^3$	0.3	$95~(180) \times 10^4$	$4 imes 10^{-3}$
$0.70 < [R_{\rm jj} = (M_{\rm jj}/M_{\rm X})] < 1.15$	20 (16)±1	3.1	43 (39)±8	0.01	200 (250)±40	0.01	$45 (85) \times 10^3$	$2 imes 10^{-4}$
$\Delta(y_{ m jj}-y_{ m X}) < 0.1$	15 (12)±1	2.3	10 (11)±4	-	12±10	-	$5~(9) \times 10^3$	-
$N_{ m tracks}$	5 (4)±1	0.8	1.3 (1.5)±0.5	-	1±1	-	$40(77) \pm 1$	-
≥ 2 jets ($p_{\rm T} > 150$ GeV, $ \eta < 2.0)$	2.5 (1.9)±0.2	0.4	0.4±0.2	-	0±1	-	$20~(36)\pm 1$	-

⇒ S/B ~ 1/8

M. Gallinaro - "CMS-TOTEM Precision Proton Spectrometer" - LHCFwd - CERN, Oct. 28, 2015 38

Yields per 1/fb – Pileup=25

Selection	Exclusive dijets		DPE		SD		Inclusive dijets	
	events	ε (%)	events	ε (%)	events	ε (%)	events	ε (%)
total number of events	652±5	100	$290 imes 10^3$	100	$2.6 imes10^6$	100	$2.4 imes 10^{10}$	100
≥ 2 jets ($p_{\rm T}$ > 100 GeV, $ \eta < 2.0)$	250±4	38	$25 imes 10^3$	8.7	$190 imes 10^3$	7.6	$3.4 imes 10^8$	1.4
PPS tagging (fiducial)	50±2	8	$15 imes 10^3$	5.1	$12 imes 10^3$	0.5	$0.1 imes 10^8$	0.05
no overlap hits in ToF detectors	43±2	7	$14 imes 10^3$	4.8	$10(18) \times 10^{3}$	0.4	$0.1 imes 10^8$	0.04
ToF difference, Δt	30 (23)±2	4.6	$11 (9) \times 10^{3}$	3.8	$3 imes 10^3$	0.1	$0.3~(0.6) imes 10^{6}$	1×10^{-3}
$0.70 < [R_{ m jj} = (M_{ m jj}/M_{ m X})] < 1.15$	20 (15)±1	3.1	15 (14)±3	0.01	85 (110)±15	-	$16 (30) \times 10^3$	1×10^{-4}
$\Delta(y_{ m jj} - y_{ m X}) < 0.1$	15 (12)±1	2.4	6 (4)±2	-	3 (11)±3	-	$1.8(3.4) \times 10^3$	-
$N_{ m tracks}$	7.4 (5.8)±0.4	1.1	0.8 (0.6)±0.3	-	1±1	-	$19~(35)\pm1$	-
$\geq 2~{\rm jets}~(p_{\rm T}>150~{\rm GeV}, \eta <2.0)$	3.5 (2.6)±0.2	0.5	0.2 (0.1)±0.1	-	1±1	-	$9(17) \pm 1$	-

⇒ S/B ~ 1/3

M. Gallinaro - "CMS-TOTEM Precision Proton Spectrometer" - LHCFwd - CERN, Oct. 28, 2015 39