

CT-PPS Roman Pot Insertion Tests at High Luminosity

LHC Working Group on Forward Physics and Diffraction 27th October 2015

Mario Deile (CERN)

on behalf of The CT-PPS Project

CERN, 2015

imino

The IP5 Roman Pot System after LS1

"Roman Pots" detectors (CT PPS & TOTEM) installed in LHC tunnel

TOTEM

26 Roman Pots around IP5 !

Introduction: RP Projects at IP5

Process in Focus: Central Production:

 $X = high E_T jets, Z, WW, ZZ, \dots$ measured in central CMS detectors

kinematic redundancy proton system – central system, e.g. $M_{\mathbf{X}}^2 = \xi_1 \xi_2 s$

- i, j = photon, Pomeron / Odderon (gluonic) exchanges
- Tagging with double-arm proton detection
- Operation at pileup levels $\mu > \sim 0.15$: correlation proton vertex central event vertex via proton time-of-flight difference
- Acceptance and luminosity depend on beam optics:

Introduction: RP Projects at IP5

Hit maps of simulated diffractive events for 2 optics configurations

 $\beta^* = 0.55 \text{ m} (\text{low } \beta^* = \text{standard at LHC})$

Operation at low β^* (< 1 m), **high luminosity** (O(fb⁻¹/day)), standard runs diffractive masses > ~300 GeV

TEINICAL DESIGN REPORT FOR

TECHNICAL DESIGN REPORT FOR CMS-TOTEM PRECISION PROTON SPECTROMETER

[CERN-LHCC-2014-021]

CMS-TOTEM Precision Proton Spectrometer (CT-PPS):

Tracking and Timing detectors in horizontal Roman Pots

→ general CT-PPS talk by M. Gallinaro in this workshop

$\beta^* = 90 \text{ m}$ (special development for RP runs)

Complementary project (not covered here):

Operation at high β^* (19 m, 90 m, > 1 km), **Low - medium lumi.** (< 6 pb⁻¹/day), special runs **all** diffractive masses

n Pots of the TOTEM Exi

Timing Measurements in the Vertical Roman Pots of the TOTEM Experiment

Tracking and thin diamond timing detectors in vertical Roman Pots

RP Insertions in Regular Fills at Low β^*

Objective of low-β* **RP operations in 2015:**

Establish Roman Pot insertions for physics operation in all regular fills from 2016 on

Problems during first Insertion Tests in 2012:

No beam instabilities observed

But impedance heating combined with outgassing:

- measured temperature rise on electronics cards inside RPs despite active cooling
- traces (black spots) of metal overheating on bellow next to a ferrite fragment
- ferrite (Ferroxcube 4S60, not baked out at 1000 °C) outgassing
 - \rightarrow vacuum deterioration
 - \rightarrow amplification of collision debris showers \rightarrow dumps on BLMs

RP Insertions in Regular Fills at Low β^*

Technical Improvements during LS1

[see e.g. LHC-XRP-EC-0010, LHC-XRP-EC-0011]

- New ferrite material for all RPs (Transtech TT2-111R) like for collimators
 → higher Curie temperature
- Ferrite bake-out at 1000 °C
 → less outgassing
- Installation of RF shields in horizontal RPs for high-lumi operation, new ferrite geometry

 \rightarrow significant impedance reduction

- Cylindrical RP geometry for new timing RPs
 - \rightarrow significant impedance reduction
 - \rightarrow but more material along the beam
 - (12 cm for cylindrical pot instead of 5 cm for old box-shaped pot)
- TCL6 to intercept showers from RPs
- → 2015: test effectiveness of modifications by inserting RPs in all steps of intensity ramp-up

RP Insertions in Regular Fills at Low β*

Commissioning Programme Philosophy:

- Study beam losses / showers and interplay with TCL collimator system extended BLM system: 1 monitor after almost each RP unit, after TCL6 and at the quadrupole Q6
- Study RP impact on impedance:
 - heating: temperature sensors on/in RPs
 - vacuum: 5 gauges in RP sector: DCS monitoring
 - beam orbit stability: monitored by impedance group

- 3 4 July: Beam-based alignment of all 14 low-beta RPs in 1¹/₂ hours,
- 5 14 July: RP insertions in all intensity steps of 50 ns intensity ramp-up still nominal TCL configuration: TCL5 in, TCL6 out, very conservative RP positions due to orbit uncertainties: ~ 30 σ horizontally, ~ 20.5 σ vertically 3, 50, 152, 296, 476 bunches per beam → lumi up to 1.3 x 10³³ cm⁻² s⁻¹
- 13 21 August: RP insertions in first part of 25 ns intensity ramp-up final TCL configuration: TCL5 out, TCL6 @ 25 σ closer RP positions: ~ 25 σ horizontally, ~ 19.5 σ vertically 2, 86, 157, 219, 315 bunches per beam → lumi up to 0.7 x 10³³ cm⁻² s⁻¹
- Technical Stop 2: Installation of Aluminium bar in cylindrical pot in 5-6 mimicking the material of a Cherenkov Quartz bar
- Since 5 Sept (ongoing): RP insertions in second part of 25ns intensity ramp-up So far: 2, 49, 219, 459, 745, 1033, 1177, 1321, 1464, 1608, 1825 bunches per beam → lumi up to 3.9 x 10³³ cm⁻² s⁻¹
 So far: no beam instabilities due to RP insertions observed.
- Aim for RP positions next year if all insertions successful:20.7 σ horizontally, 18.2 σ verticallyor closer if collimation system allows

BLM Response to RP Insertions

(25 ns bunch spacing, XRPH @ \sim 25 σ)

- Dose rates proportional to luminosity \rightarrow showers = collision debris, not single-beam halo
- RP generating strongest shower dose rate: cylindrical pot (E6): most material
- Strong dose rate in BLM(TCL6), very small signals in quadrupose BLMs \rightarrow TCL6 is effective

BLM Response with and without Dummy Quartic Bar in RP

(Insertion of horizontal pots to $\sim 25 \sigma$ from beam centre)

Installation of dummy QUARTIC bar \rightarrow dose rate in BLM(E6) increases by ~ factor 2

BLM Response before and after Technical Stop 2

(Insertion of horizontal pots to ~25 σ from beam centre)

Installation of dummy QUARTIC bar \rightarrow dose rate in BLM(E6) increases by ~ factor 2

Linear Extrapolation to L=10³⁴ cm⁻² s⁻¹: BLM(E6) = 0.47 mGy/s = 0.07 Threshold \rightarrow no problem from BLMs expected

Losses before and after TS2 are compatible.

Slight change in BLM(TCL6): TCL6 collimator was realigned in TS2 due to a tilt in the jaws.

4000

Vacuum and Temperature Response

Example fill: horizontal pots @ ~25 σ from beam centre, L ~ 1.9 x 10³³ cm⁻² s⁻¹ Time evolution of pressure and temperature:

Vacuum gauges near the most upstream RP: significant but unproblematic pressure rise

Temperature sensors on cylindrical pot: hottest spot = pot floor (towards beam) !

Slow temperature increase approaching an equilibrium value,

moderate magnitude: up to 36 °C at RP floor 3 mm from beam centre without cooling Comparison: 2011 in a fill without cooling: 41 °C on RP electronics card with pot retracted (4 cm from beam)

TOTEM

Vacuum in 25ns Intensity Ramp

Equilibrium pressure after RP insertion

No dangerous pressure rise in machine vacuum observed.

Pressure Increase [10⁻¹⁰ mbar]

Vacuum Pressure Rise @ RP Insertion

Most of the pressure rise with lumi is not related to RP insertion.

Beam 1, 25ns, Post TS2

 \rightarrow isolate RP effect by measuring only the increase at insertion time

Beam 2, 25ns, Post TS2

TOTEM

Flange Temperature Rise versus Lumi

Temperature increase on the flange of the cylindrical RPs:

no simple saturation function \rightarrow no evident fit and extrapolation to the asymptotic level

 \rightarrow plot the increase after 2 and 4 hours from insertion time

 \rightarrow No problem expected, but to be watched with attention.

Sector 4-5: vortex cooling installed in cylindrical pot (presently off)

TOTEM

Pot Floor Temperature Rise versus Lumi

ТОТЕМ

Temperature increase relative to RP insertion after 2 and 4 hours and asymptotic value (Probe on the floor of the cylindrical RPs)

Conclusions from the Insertion Tests

Observations from insertions to 25 $\sigma\,$ so far:

- BLM response: linear with luminosity, extrapolation to 10³⁴: no problem expected.
- Vacuum pressure: unclear dependence on luminosity, generally rising, other strong systematic effects, no problem expected, but to be watched.
- Temperature in RP: increasing with luminosity, no problem expected, but to be watched. In case of problems: cooling
- No beam instabilities introduced

If final luminosity in 2015 is reached without problems \rightarrow next challenge: go closer ($\leq 20 \sigma$)

RP Positions Relative to the Beam Centre and the Resulting Acceptance Limits

 $\sqrt{s} = 13$ TeV, $\beta^* = 0.8$ m, $\varepsilon_n = 3.5$ μ m rad

		Now		Next Step (2016)	
Sector 5-6 (Beam 1)	Horizontal RP	$20.7 \sigma + 0.5 mm$ $+ 0.5 mm (window + gap)$	ξ_{min}	20.7 σ + 0.5 mm (window + gap)	ξ_{min}
	XRPH.C6R5.B1	4.416 mm	0.052	3.916 mm	0.046
	XRPH.D6R5.B1	3.422 mm	0.043	2.922 mm	0.037
	XRPH.E6R5.B1	3.111 mm	0.040	2.611 mm	0.034
Sector 4-5 (Beam 2)	XRPH.C6L5.B2	4.478 mm	0.052	3.978 mm	0.046
	XRPH.D6L5.B2	3.505 mm	0.043	3.005 mm	0.037
	XRPH.E6L5.B2	3.194 mm	0.041	2.694 mm	0.035

Minimum diffractive mass in central diffr. (double arm measurement in C & D & E):

 $M = \sqrt{\xi_1 \, \xi_2 \, s}$

M > 676 GeV

M > 598 GeV

 $\mathbf{N}_{\text{and}} \mathbf{C}_{\text{base}} (\mathbf{0}\mathbf{0}\mathbf{1}\mathbf{C})$

upper ξ cut by TCL4: **0.099** upper ξ cut by TCL5: 0.106 M < 1.287 TeV if no other aperture limitations are present !

vertical at $\varepsilon_n = 3.5 \ \mu m \ rad$

	$\sigma_{y,beam}$	L _y	$18.2 \sigma + 0.5 mm$ + 0.5 mm (window + gap)	$ \mathbf{t}_{\mathbf{y}} _{\min}$	18.2 σ + 0.5 mm (window + gap)	$ \mathbf{t}_{\mathbf{y}} _{\min}$
XRPV.C6R5.B1	418 µm	16.516 m	8.608 mm	11.5 GeV^2	8.108 mm	10.2 GeV^2
XRPV.D6R5.B1	386 µm	15.207 m	8.025 mm	$11.8~\mathrm{GeV}^2$	7.525 mm	10.3 GeV^2
XRPV.C6L5.B2	408 µm	16.144 m	8.426 mm	11.5 GeV^2	7.926 mm	10.2 GeV^2
XRPV.D6L5.B2	372 μm	14.631 m	7.770 mm	$11.9~\mathrm{GeV}^2$	7.270 mm	$10.4 \mathrm{GeV}^2$

Note: upper cut-off due to aperture limitations not studied.

A further opening of TCL4 would need studies and decision by collimation group.