AFP Tracker and Beam Tests

Jörn Lange on behalf of the AFP Group

LHC Working Group on Forward Physics and Diffraction, 27 Oct 2015

AFP Status

- Engineering Change Request
 - Accepted at LMC meeting Aug 26
- Staged approach:
 - One arm (0+2) in winter shutdown 2015/16
 - Second arm (2+2) in shutdown 2016/17

Other AFP talks tomorrow: AFP Physics by R. Staszewski AFP TDAQ by K. Korcyl AFP installation by P. Sicho

AFP Tracking Detector

- Task
 - Tag p and measure its momentum (together with LHC magnets)
- Requirements
 - 1 µrad angular resolution
 - 10 (30) µm resolution in x (y)
 - Slim edge 100-200 μm
 - Radiation hard (non-uniform irradiation)
- Solution
 - 4 planes of 3D CNM FE-I4 Si pixel sensors (ATLAS-IBL proven)
 - 14° tilt in x for efficiency and resolution improvement
 - FE-I4 chip
 - 336x80 pixels with 50x250 μm²
 - 1.68x2.00 cm² active area \rightarrow single-chip module
 - Threshold 1.5-3 ke tunable
 - Charge information from Time Over Threshold (ToT, 4 bit)
 - Sensors
 - Double-sided 3D sensors by CNM (Barcelona)
 - 230 µm thick, p-type substrate, 2E
 - Edge termination with 3D guard rings
 - Edge slimmed at side facing the beam (100-200 μm)
 - Tracker Cards
 - Aluminium or Al-Carbon-Fibre (NOVAPACK)

27 Oct 2015

AFP Sensor I – Slim Edge

- CNM: Fully sensitive up to last pixel (3D guard ring design)
- **FBK:** Sensitivity extends ~75 μ m beyond last pixel (no guard ring) \rightarrow <15 μ m insensitive edge: slimmest edge apart from fully active edge
- For both CNM and FBK: ≤150 µm insensitive edge possible

→ AFP slim-edge requirements fulfilled

AFP Sensor II – Radiation Hardness

- Radiation hardness for uniform radiation to 5x10¹⁵ n_{eq}/cm² known from IBL
- AFP: Highly non-uniform fluence from diffractive p
 - $3x10^{15} n_{eq}$ /cm² in max. (~7 TeV p), orders of magnitudes less nearby
- 2 irradiation campaigns with different non-uniformity scenarios

1) Focussed 23 GeV p irradiation (CERN-PS)

 \rightarrow fluence spread large

23 MeV p (KIT) through hole in 5mm Al plate
→ very localised fluence with abrupt transition

~5x10 15 p/cm2

of protons per 100 fb⁻¹/ pixel (50µm×250µm)

Beam background not considered

d ≥ 2mm = 1.37e+1

Sensor area (20 x 20mm

10¹²

10¹¹

Efficiency 96-99% in all regions

S. Grinstein et al., NIM A730 (2013) 28 J. Lange et al., JINST 10 (2015) C03031

\rightarrow AFP radiation-hardness requirements fulfilled

27 Oct 2015

AFP Sensor III – Resolution

- At 0° tilt extensively studied in beam tests
- Depends on cluster size, algorithm, tuning, ...
 - Per-plane resolution for events with 1 or 2 pixels/cluster (98-99% of the events, simple ToT weighting)
 - RMS = 12 μ m in 50 μ m pixel direction (AFP x)
 - RMS = 72 μm in 250 μm pixel direction (AFP y)
 - Degraded for larger cluster size due to delta rays
 - Only slight degradation (~1 μm) after 4x1015 $n_{eq}^{}/cm^2$ irradiation
- Expect improvement in x to <10 µm per plane from 14° tilt
 - Enhanced charge sharing
 - Under study
- 4-plane telescope expected to improve over single plane
 - In x direction by roughly v4 (continuous distribution from charge sharing)
 - In y direction with the help of staggering planes (discrete one-hit distribution)
 - \rightarrow e.g. staggering by 80 μm expected to give ~25 μm RMS

\rightarrow AFP resolution requirements fulfilled

I. Lopez et al., ANIMMA Conference 2015, Lisbon

AFP Pixel Module Production

- 3D sensor production run at CNM
 - Finished in July 2014
 - 8 lost wafers due to machine malfunctions,
 5 wafers successfully finished (40 sensors)
 - Slim-edged to 180 µm
 - 9 good + 5 medium quality-IV sensors
 - \rightarrow Low yield due to etching problems with DRIE
 - \rightarrow Identified and solved for next runs
 - Reliable IV only after bump-bonding
 - → Final yield might change
 (2 bad IVs shifted to medium)
 - New AFP run started at CNM in February 2015, to finish in December
- Tracker cards (AI) produced by Bergen
- Flexible Circuit Board production by Oslo to finish soon
- Module assembly incl. bump- and wirebonding and QA to be done at IFAE Barcelona
 - Full assembly line in house incl. bump- and wirebonding machines
 - Already many successful tests performed on prototypes

\rightarrow AFP tracker production proceeding well

Assembled prototype AFP_6181_W6_S1

AFP Beam Tests

- AFP beam tests at CERN SPS H6A/B
 - 120 GeV pions
- November 2014 (1 week)
 - Tracking+Timing Integration
 - Detector Performance
- September 2015 (2 weeks)
 - Further ATLAS TDAQ Integration
 - Detector Performance
- Typically 20 participants
 - Overlap with ALFA group
 - In 2014 also some CMS/TOTEM participants

Results

- In the following almost only from 2014 beam test
- Documented in AFP TDR, ATLAS-TDR-024 (2015)
- 2015 analysis on-going
- Publication in preparation

Integrated AFP Prototype

Timing: Quartic 4 trains of 2 LQbars

Quartz+SiPM fast timing reference (not for final AFP detector)

27 Oct 2015

System Components

TRACKING: 5 FE-I4 3D Pixel Detectors

- IBL style (by CNM/FBK), IBL spares (not best quality)
- 2 of them with AFP slim edge
- Bias voltage typically 10 V
- HitOr triggering output of all pixels

3 mm Train 1 5 mm Train 2 5 mm Train 3 5 mm Train 4

TIMING: 4 rows of trains of 2 LQbars

- Oriented at Cherenkov angle of 48°
- Standard: transparent LQbars, 2 adjacent LQbars/train
- Also different LQbars in 2015 (transparent/matt)
- Also different bar configurations in 2015 (e.g. with gap)

Signal chain

- \rightarrow 4x4-pixel MCP-PMT
- \rightarrow 2 10x Amp.
- → Constant Fraction Discriminators (CFD)
- → High-Precision Timeto-Digital (HPTDC)

Trigger: Pixel Plane Coincidence

- Track trigger for initial AFP runs at low µ (later ToF)
- Logic by HitBus chip developed for ATLAS-DBM
- ATLAS TDAQ chain tested: LTP + TTC in VME crate

See talk by K. Korcyl

READOUT: RCE

6 mm 6 mm

- Extensively proven in IBL stave testing
- HSIO board with 8-16 input channels (here: 5 pixels + 1 HPTDC)

27 Oct 2015

Online Monitoring

- Integrated in RCE data taking GUI
- Good online control on main tracking parameters
- Also one ToF plot available per HPTDC channel

Tracker Reco. + Performance

Cluster Size

Efficency Map - Sensor 2

- Tracks reconstructed with software framework
 Judith G. McGoldrick al., NIM A765 (2014) 140
- 2014 data at 0° analysed
 - Mostly 1 cluster per plane and 1 track per trigger reconstructed (98%)
 - Mostly 1 pixel/cluster (80%)
 - Dominantly digital/binary behaviour at 0°
 - Efficiency per plane >98% at only 10 V
 - Track resolution in x of ~10 μm at 0°
- In 2015 also at AFP tilt of 14° measured
 - Still under study
 - Expect efficiency improvement
 - Expect enhanced charge sharing: mostly 2 pixels/cluster
 - \rightarrow expect resolution improvement
 - (<10 µm per plane)

\rightarrow Good tracker performance

(despite IBL-spare quality)

27 Oct 2015

Tracking-Timing Correlations

• Principle:

Track position and LQbar train numbers are correlated in space (for parallel tracks): Upper pixels fire \rightarrow upper LQbar trains fire

- Good spatial correlations between pixels and LQbars
 - → Tracking-timing integration works!

LQbar Efficiencies + X Talk

2014 data, Standard LQbars

- Track info very useful to determine if LQbars hit or not
 → can determine LQbars efficiencies and cross talk
- Efficiency increasing with V_{MCP-PMT}, eff.>99% at 1900 V
- Cross talk between trains increasing with V_{\rm MCP-PMT}, few % at 1800 V, 60-90% at 1900 V
 - Disadvantageous if LQbars intended for use as positionresolved trigger, but no problem for time resolution

XTalk in Neighbour bar

Time Resolutions

- Time resolutions from time difference with fast SiPM references
 - With oscilloscope or full readout system (HPTDC+RCE)
- SiPM resolution: 11 ps (scope), 18 ps (HPTDC+RCE)
 → HPTDC contribution in SiPM channels ~ 14 ps
- LQbar resolution improves with V_{MCP-PMT}
 - At 1900 V (reference contribution subtracted): 30 ps/bar (scope), ~40 ps/bar (HPTDC+RCE)
- 2-LQbar-train average improves over single bar
 - At 1900 V (reference contribution subtracted): 25 ps/train (scope), ~35 ps/train (HPTDC+RCE)
 - But not by v2 → correlations between bars of same train present (50-60%)
- Optimisation of time resolution has not been focus of 2014 beam test
 - More systematic studies done in 2015 (analysis on-going), more planned for 2016
 - HPTDC contribution still under study
 - Final AFP ToF system will have more LQbars per train

\rightarrow Already meets requirements of initial AFP runs at low μ

2014 data, Standard LQbars

Conclusions

• AFP tracker

- Pixel module prototypes extensively qualified
 - → Fulfill AFP requirements of slim edge, non-uniform radiation hardness and resolution
- Pixel module production on-going
- AFP beam tests 2014+15 with first AFP prototype successfully finished
 - Tracking + timing integrated into RCE readout
 - Integration into ATLAS TDAQ system tested
 - Good performance of pixel tracker and LQbar timing detectors

• Outlook:

- Analysis efforts of 2015 data on-going
- Preparing for installation

Other AFP talks tomorrow: AFP Physics by R. Staszewski AFP TDAQ by K. Korcyl AFP installation by P. Sicho

BACKUP

LQbar Time Resolution (Scope)

- Time resolutions from time difference with fast SiPM references
 - With oscilloscope or full readout system (HPTDC+RCE)
- Oscilloscope measurements
 - SiPM resolution: 11 ps
 - LQbar resolution improves with V_{MCP-PMT}: 30 ps/bar at 1900 V (SiPM contribution subtracted)
 - Train average improves over single bar:

25 ps/train at 1900 V

- But not by $\sqrt{2} \rightarrow$ correlations between bars of same train present (50-60%)
- Optimisation of time resolution has not been focus of 2014 beam test
 - More systematic studies done in 2015 (analysis on-going), more planned for 2016
 - Final AFP ToF system will have more LQbars per train

AFP Preliminary

$V_{MCP-PMT}$ [V]	1750	1800	1850	1900	
LQbar	Time resolution [ps]				
1A	63 ± 5	45 ± 5	36 ± 5	31 ± 5	
1B	85 ± 5	52 ± 5	37 ± 5	30 ± 5	
Average Train 1	64 ± 5	44 ± 5	31 ± 5	25 ± 5	
2A	-	48 ± 5	36 ± 5	32 ± 5	
2B	-	42 ± 5	31 ± 5	30 ± 4	
Average Train 2	-	42 ± 5	29 ± 5	25 ± 4	

Jörn Lange - AFP Tracker and Beam Test

2014 data, Standard LQbars

LQbar Time Resolution (HPTDC)

• HPTDC+RCE measurements (FULL AFP SYSTEM)

2014 data, Standard LQbars

- SiPM+HPTDC resolution: 18 ps
 → HPTDC contribution in SiPM channels ~ 14 ps
- LQbar+HPTDC resolution improves with V_{MCP-PMT}:
 ~40 ps/bar at 1900 V (SiPM+HPTDC contribution subtracted)
- Train average improves over single bar:
 - ~35 ps/train at 1900 V
 - Also here not by v2 due to correlations between bars of same train
 - Meets requirements of initial AFP runs at low µ
- LQbar resolutions with HPTDC and scope cannot be compared 1:1 to extract HPTDC contribution of each LQbar channel since data taken under different conditions
 - More systematic studies in 2015 beam test (analysis on-going)
 - Indications that HPTDC contribution depends on channel (especially if on different HPTDC chips)

$V_{MCP-PMT}$ [V]	1750	1800	1850	1900	
LQbar	Time resolution [ps]				
1A	78 ± 5	61 ± 6	52 ± 6	46 ± 5	
1B	85 ± 6	60 ± 6	47 ± 6	41 ± 6	
Average Train 1	67 ± 7	54 ± 12	44 ± 6	37 ± 6	
2A	94 ± 5	80 ± 10	50 ± 6	43 ± 7	
2B	94 ± 8	64 ± 5	45 ± 6	38 ± 6	
Average Train 2	77 ± 7	63 ± 7	41 ± 6	35 ± 6	

AFP Preliminary

27 Oct 2015