UFSD update

Test beam results Sensor design Board design Timeline

INFN and Università di Torino, Università Piemonte Orientale

Testbeam Set-up

Testbeam part of the July CMS HGC

Testbeam: signal and noise

- Testbeam, very clean shape:
- 120 GeV muons
- Two UFSD, gain 10 and gain 20.
- Read-out with a CSA amplifier with a 4 ns integration time.
- Noise ~ 1 mV,
- Signal ~ 150-200 mV
- Rise time 20-80% ~ 5 ns

offline

ട്ര

4

ട്ട

8

2

time

Testbeam Results

300 micron thick, ~ 4 pF sensor Gain 10 → resolution ~ 145 ps Gain 20 → resolution ~ 85 ps

New productions: winter 2015

CNM: 50 and 100 micron thick silicon, with final PPS geometry \rightarrow next pages

Possible Coverage

Detector occupancy per mm² at pile-up = 50

Use as reference the Quartic coverage

How large each pad can be?

 $1 \text{ mm}^2 = 2 \text{ pF}$ for 50 micron thick sensors $1 \text{ mm}^2 = 1 \text{ pF}$ for 100 micron thick sensors

Need to evaluate

- dV/dt vs area.
- How long each bond wire can be
- Electronic noise

Set as goal 1 mV noise \rightarrow dV/dt ~ 50 mV/ns to obtain 20 ps resolution

dV/dt vs Signal fraction for C = 4, 6 pF and gain = 8, 10, 12, 14, 16

Bond wire

The geometry of the sensor has to take into account the bond-wire length

A bond wire act as an inductor of 0.8 nH/mm placed in between the detector capacitance C and the amplifier input resistance R

CT-PPS proposed sensor geometry

CT-PPS proposed sensor geometry

What resolution per plane can we expect?

There are 2 known main contributions:

Noise \rightarrow jitter (from current electronics and testbeam) Landau fluctuations \rightarrow additional time spread (from simulation)

For gain >~15 $\rightarrow \sigma$ < 40 ps

Note we remain below 40 ps even assuming an un-accounted for additional time spread of 20 ps.

Detector occupancy per mm^2 at pile-up = 50

Lateral collector ring and sensor fill factor

No multiplication for particles hitting in between pads

Very important: **need n-deep well** at the end of each pad to prevent particles hitting in between pads from reaching the gain region.

Dead region: ~ 50 micron along each internal pad border = 5 mm^2 Active area: 67/72 = 93% per sensor.

Sensor thickness and slim edge

Rule: when the depletion volume reaches the edge, you have electrical breakdown.

It's customary to assume that the field extends on the side by $\sim 1/3$ of the thickness.

edge = k* thickness k = 1 very safe k = 0.5 quite safe

• K = 0.3 limit

By construction, thin detectors (~ 50 micron) have therefore slim edge

PPS proposed read-out card

Next steps

Done:

Testbeam in July with 300 micron thick UFSD sensors. Preliminary analysis indicates a time resolution of ~85 ps for a gain~20, and ~145 ps for a gain~10.

We finalized the 50 and 100 micron thick sensor design, and submit the production at CNM. Turn around time ~ 3-4 months.

 \rightarrow Foreseen time resolution ~ 40 ps

To be done:

- Develop the pre-amplifier chain, to be compatible with the NINO inputs.
 Need to be rad-hard. →Torino, Pilsen, Santa Cruz...?? ~ 6 month
- Evaluate the heating requirements
- Study the NINO behavior for very short pulses (Jose might help in this topic).
 Hopefully it works....
- Define the services needed in the tunnel: Low voltage, High voltage, cooling

Conclusions

Simulation shows a time resolution of \sim 40 ps for 4-6 pF sensors with gain \sim 15.

We have developed a sensor design with minima dead area, short bond-wires and the possibility of 100% coverage. Ready by ~ winter 2015.

We are working towards a pre-amplifier design compatible with the NINO+HPTDC read-out chain.

 \clubsuit Need to evaluate the NINO chip with UFSD sensors. Does it work?