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Tracking in Run 4 

~60M track/s (20x Run 2) 
•  x2-5 CPU shortage 

offline (another one…) 
If we can’t write ~40GB/s 
RDOs we’ll need to gain (a 
lot) more than that online. 
•  Surely we can parallelize 

our way out of trouble? 
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CPU%offline%needs%
•  Current%LHC%(~2015):%
–  30%tracks%per%collision%
–  30%collisions%per%event%
–  1000%events/s%
– Need%to%find%1M(tracks/s(

•  Future%LHC%(~2025):%
–  30%tracks%per%collision%
–  200%collisions/event%
–  10000%events/s%
– Need%to%find%>60M(tracks/s((

To%cope%we%need%
a)  CPU%increase%to%be%at%most%linear%with%Ntrack%
b)  Moore’s%law%to%conPnue%%%2/9/15% Beate%Heinemann,%Berkeley% 7%



Why is Parallel Tracking so hard? 

Algorithms: Iterative (propagation, fitting), irregular 
(combinatorial searches with lots of branch points) 

Data: sparse (hits), non-local (B-field integration) 

Can Machine Learning (ML) provide a solution 
that uses regular, simple algorithms, and is 
naturally data parallel? 
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Machine Learning 

Data-driven adaptive modeling of a system 
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Why Now?	
  

Current hardware (HPC, GPUs) make possible to 
train very complex NNs with millions of inputs and 
thousands of outputs. 

Exploiting GPUs, FPGAs, upcoming Neuromorphic 
hardware pushes us towards  Computing with 
many simple elements 
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Computing with simple elements	
  

‘neuron’	
  

by	
  themselves,	
  limited	
  func=onal	
  repertoire.	
  	
  	
  

Simple	
  compu=ng	
  elements…	
  

(Kristofer	
  Bouchard,	
  LBNL)	
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Feed-forward	
  NN: Classification	
  

2	
  

‘neuron’	
  

3	
  

as	
  a	
  network,	
  learn	
  to	
  perform	
  diverse	
  func=ons	
  

Simple	
  compu=ng	
  elements…	
  

Flow	
  of	
  informa=on	
  

Classifica1on	
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Convolutional NN: Feature Extraction	
  

Feature	
  Extrac1on	
   Classifica1on	
  

‘neuron’	
  

60	
  

Simple	
  compu=ng	
  elements…	
  

as	
  a	
  network,	
  learn	
  to	
  perform	
  diverse	
  func=ons	
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Recurrent NN: Time-varying Functions	
  

F(t)	
  

‘neuron’	
   Simple	
  compu=ng	
  elements…	
  

Feature	
  Extrac1on	
   Classifica1on	
   Time-­‐varying	
  Func1ons	
  

Dynamics	
  

as	
  a	
  network,	
  learn	
  to	
  perform	
  diverse	
  func=ons	
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Higgs ML Challenge 
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Huge success 
 
ML already in use for 
Higgs analysis 
 
Still a big effort to 
setup (~2  years) 
 



David R, Markus E, and PC volunteered to 
organize a Tracking Challenge 
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Tracking Kaggle Challenge 

•  One question (follow-up questions possible) 
•  One evaluation metric (training function) 
•  Two data samples: Training (labelled), Test 
•  One “starting kit” (reference solution) 
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Our Question 

 
Immediate Goal:  
Build a fast, scalable, pattern recognition engine  
Real Goal:  
Learn if-how-where to apply ML to reconstruction 
 
Question: 
Given a list of space-points, identify those belonging 
together (to a track).  
 
May add fitting at a later time 
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Evaluation Metric 

•  Non-trivial, still under discussion 
–  Positive weight for each hit correctly assigned to track 
–  Negative weight for fake hits 

•  Issues 
–  Balance efficiency, fake rate, and complexity 
–  Need to fold into metric instructions needed to run. 
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Data Sample 

json format, may move to HDF5 ( on afs ~calaf/public/kaggle) 
 { 
                        "Identifier" : 147838943612633088, 
                     "GlobalX" : 33.180407, 
                     "GlobalY" : -3.219767, 
                     "GlobalZ" : -112.9625, 
                        "WidthPhiR" : 0.05, 
                        "WidthZ" : 0.5, 
                        "energyLoss" : -28, 
                        "splitProbability1" : 0, 
                        "splitProbability2" : 0, 
                        "Deposits" : [ 
                                { 
                                        "Charge" : 13051.327148, 
                                        "TruthEventIndex" : 0, 
                                   "BarCode" : 200001 
                                } 
                        ] 
                }, 

Currently Run 2 Pixel with single mu events. Will try tau soon. 
Next we will use ITK (Run 4) configuration. Later will add pileup. 
No idea how many events will be needed, expect O(109)  tracks. 

ATLAS	
  C&S	
  Week	
  15	
  

•  Not	
  there	
  for	
  noise	
  hits.	
  
•  Training	
  file	
  only	
  

•  Per-­‐job,	
  geometry	
  info	
  in	
  separate	
  file	
  



Starting Kit 

Provide reference solution to kaggle competitors 
•  Typically a simple ML solution 
•  Could provide simplified HEP Tracking, 

issue is how to package to run standalone. 
 
David Clark (UCB) started working on single track classifier 
using Caffe.  

–  Outputs probability N hits belong to track 
–  Trained using chisquare(hit, propagated GenParticle) 

 
See https://github.com/davidclark1/TrackNet 
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Tracking Kaggle Group 

•  tracking-kaggle@googlegroups.com  
(open, currently 20 members) 

•  Members from 
–  ATLAS, CMS, LHCb (since last week) 
–  ML experts from HiggsML 
–  Tracking experts from Connecting The Dots 

•  Meets every other Mon at 17:10 CET on vidyo 
•  Time-frame next CTD workshop (Feb 16?) 

–  Settle on question, data samples, starting kit strategy 
by Sep 15 
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Final Thoughts 

•  In 2025 ML will be more mainstream than C++ 
–  Ideally suited for highly parallel architectures with 

simple computing nodes (GPUs, FPGAs, …) 
–  Likely part of any Run 4 tracking solution 

•  ML is not a trivial subject, will take years to build 
HEP expertise. 

•  The Kaggle Tracking Challenge is a great 
opportunity to enter this brave new world. 
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Thanks	
  

•  Paolo Calafiura and Collaborators 
•  Kristofer Bouchard 
•  Maurice Garcia-Sciveres 
•  Beate Heinemann 
•  Peter Nugent 
•  Peter Sadowski 
•  … 
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Kalman Filters and Recurrent NNs	
  

Classic Data Assimilation algorithm (1960, NASA)	
  
Iteratively track evolution of a dynamic system	
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LHCb Trigger Retina Processor	
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Figure 1. Schematic representation of the detector mapping (more details in the text). The grid in parameter
space (left) and the corresponding receptors in the detector (right).

The centre of each cell identifies a track in the detector space, that intersects detector layers in spa-
tial points that we call receptors. Therefore each (mi,q j)-cell of the parameter space corresponds to
a set of receptors {xi j

k }, where k = 1, . . . ,n runs over the detector layers, as shown in figure 1. This
procedure is called detector mapping and it is done for all the cells of the track parameter space,
covering all the detector acceptance. For each incoming hit, the algorithm computes the excitation
intensity, i. e. the response of the receptive field, of each (mi,q j)-cell as follows:

Ri j = Â
k,r

exp
⇣

�
s2

i jkr

2s2

⌘
, (2.1)

using the distance
si jkr = xk,r � xi j

k , (2.2)

where xk,r is the r-th hits on the detector layer k, while s is a parameter of the retina algorithm, that
it can be adjusted to optimize the sharpness of the response of the receptors.

After all hits are processed, tracks are identified as local maxima over a threshold in the space
of track parameters. Averaging over nearby cells it is possible to extract track parameters with a sig-
nificant better resolution than the available cell granularity. Hence, track parameters are extracted
performing the centre of mass of the cluster.

3. Retina algorithm in a real HEP experiment

In a real HEP detector, the geometry and the topology of the events are quite different from the
simple case described in section 2. For example, trajectories of charged particles are not straights
lines, because of the presence of the magnetic field (necessary to measure their momenta), and
are affected by multiple scattering and detector noise effects. In addition, the retina response to
realistic high track multiplicity LHC events should be studied, to understand if the size of the retina
in terms of number of cells, at fixed desired tracking performances, is limited, in order to check
if a realistic implementation using current available technology is feasible or not. Therefore an
accurate study of the retina algorithm in a realistic environment is necessary.

– 2 –

Figure 2. Response of the retina (bottom left) to a particular event (top). Bottom right, tracks reconstructed
by the retina (over-a-threshold maxima).

We chose to focus our work on the LHCb-Upgrade detector, where tracking plays a partic-
ularly important role in collecting enriched samples of flavored events. LHCb is a single-arm
spectrometer covering the pseudorapidity range 2 < h < 5, specialized to study heavy flavored
events. LHCb-Upgrade [4] is a major upgrade of the current LHCb experiment [5] and it will start
data taking after the Long Shutdown 2 (LS2) of the LHC, in 2020, at the instantaneous luminosity
of 3 ⇥ 1033 cm�2s�1. All the sub-detectors will be read at 40MHz, allowing a complete event re-
construction at the LHC crossing rate. To benchmark the retina algorithm, we decided to perform
the first stage of the LHCb-Upgrade tracking sequence [6], performing the track reconstruction
using the information of only two sub-detectors, placed upstream of the magnet: the VErtex LO-
cator (VELO), a silicon-pixel detector [7] and the Upstream Tracker (UT) [8], a silicon mini-strip
detector. We used the last eight forward pixel layers of the VELO and the two axial layers of the
UT. A sketch of the chosen configuration is reported in figure 3. The 3D trajectory of a charged
particle is identified by five parameters. We arbitrarily chose:

u,v spatial coordinate of the intersection point of the track with a “virtual plane” perpendicular
to the z-axis, placed to a distance zvp from the origin of the coordinate system (red plane in
figure 3);

– 3 –

FPGA	
  implementa=on	
  
1mus	
  tracking	
  
Offline-­‐quality	
  performance	
  
Certainly	
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Neuromorphic Computing	
  

“Spikey” from 
Electronic Visions 
group in Heidelberg	
  

Qualcomm’s NPU’s 
for robots.	
  

SpiNNaker’s 1B 
neuron machine	
  

Stanford’s Neurogrid	
  

Intel’s concept design...	
  

IBM’s 
TrueNorth	
  

(Peter Nugent, LBNL)	
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IBM TrueNorth	
  

•  1	
  million	
  programmable	
  neurons	
  
•  256	
  million	
  synapses	
  
•  4096	
  neurosynap1c	
  cores	
  
•  Uses	
  70mW	
  per	
  chip	
  
•  5.4	
  billion	
  transistors	
  
•  Spiking	
  rate	
  >1000Hz	
  

A	
  single	
  chip	
  can	
  process	
  color	
  video	
  in	
  real-­‐
1me	
  while	
  consuming	
  176,000	
  1mes	
  less	
  
energy	
  than	
  a	
  current	
  Intel	
  chip	
  performing	
  
the	
  exact	
  same	
  analysis.	
  Note	
  the	
  Intel	
  chip	
  
can	
  not	
  do	
  this	
  analysis	
  in	
  real-­‐1me	
  and	
  is	
  in	
  
fact	
  300	
  1mes	
  slower!	
  	
  

Merolla+	
  Science	
  (2014)	
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