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Tracking in Run 4

~60M track/s (20x Run 2)

« x2-5 CPU Shortage / D \  LLEXPERIMENT
offline (another one...) s\

If we can’t write ~40GB/s
RDOs we’'ll need to gain (a
lot) more than that online.

« Surely we can parallelize
our way out of trouble?
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Why is Parallel Tracking so hard?

Algorithms: Iterative (propagation, fitting), irregular
(combinatorial searches with lots of branch points)

Data: sparse (hits), non-local (B-field integration)

Can Machine Learning (ML) provide a solution
that uses regular, simple algorithms, and is
naturally data parallel?
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Machine Learning

Data-driven adaptive modeling of a system

Training
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Why Now?

Current hardware (HPC, GPUs) make possible to
train very complex NNs with millions of inputs and
thousands of outputs.

Exploiting GPUs, FPGAs, upcoming Neuromorphic
hardware pushes us towards Computing with
many simple elements
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Computing with simple elements

*Input  Simple Neuron \

Simple computing elements...

7 . . . .
.+ by themselves, limited functional repertoire.
N/ \—//‘
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(Kristofer Bouchard, LBNL)
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Feed-forward NN: Classification
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Convolutional NN: Feature Extraction
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Recurrent NN: Time-varying Functions
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Higgs ML Challenge

H uge SUccess Higgs Bosor@e Learning Challenge

Competition Details » Getthe Data » Make a submission

ML already in use for

Higgs analysis Use the ATLAS experiment to identify th
Higgs boson

Still a big effort to OATLAS 5.
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Connecting o
BERKELEY LAB
A Workshop on Pattern Recognition in

Sparsely Sampled Data

The Berkeley Experimental Particle Physics
Center Workshop Series

Connecting The Dots 2015
LBNL, Feb. 9-11, 2015

David R, Markus E, and PC volunteered to
organize a Tracking Challenge
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Tracking Kaggle Challenge

* One question (follow-up questions possible)
* One evaluation metric (training function)

« Two data samples: Training (labelled), Test
* One “starting kit” (reference solution)
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Our Question

Immediate Goal:
Build a fast, scalable, pattern recognition engine

Real Goal:
Learn if-how-where to apply ML to reconstruction

Question:
Given a list of space-points, identify those belonging
together (to a track).

May add fitting at a later time
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Evaluation Metric

* Non-trivial, still under discussion
— Positive weight for each hit correctly assigned to track
— Negative weight for fake hits

e |ssues
— Balance efficiency, fake rate, and complexity
— Need to fold into metric instructions needed to run.
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Data Sample

json format, may move to HDF5 ( on afs ~calaf/public/kaggle)
{

"Identifier" : 147838943612633088, J
"GlobalX" : 33.180407,

"GlobalY" : -3.219767,

"GlobalZ" : -112.9625,

"WidthPhiR" : 0.05,

"WidthZ" : 0.5,

"energylLoss" : -28,

"splitProbability1" : 0,

"splitProbability2" : 0,

Per-job, geometry info in separate file

"Deposits" : [
{
"Charge" : 13051.327148, . . .
"TruthEventindex"” : 0, Not. t-here. for noise hits.
"BarCode" : 200001 * Training file only

]

5
Currently Run 2 Pixel with single mu events. Will try tau soon.
Next we will use ITK (Run 4) configuration. Later will add pileup.
No idea how many events will be needed, expect O(10°) tracks.
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Starting Kit

Provide reference solution to kaggle competitors
« Typically a simple ML solution

« Could provide simplified HEP Tracking,
Issue is how to package to run standalone.

David Clark (UCB) started working on single track classifier
using Caffe.

— Outputs probability N hits belong to track
— Trained using chisquare(hit, propagated GenParticle)

See https://github.com/davidclark1/TrackNet
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Tracking Kaggle Group

tracking-kaggle@googlegroups.com
(open, currently 20 members)

Members from

— ATLAS, CMS, LHCD (since last week)

— ML experts from HiggsML

— Tracking experts from Connecting The Dots

Meets every other Mon at 17:10 CET on vidyo

Time-frame next CTD workshop (Feb 167?)

— Settle on question, data samples, starting kit strategy
by Sep 15
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Final Thoughts

e |In 2025 ML will be more mainstream than C++

— ldeally suited for highly parallel architectures with
simple computing nodes (GPUs, FPGAs, ...)

— Likely part of any Run 4 tracking solution

* ML is not a trivial subject, will take years to build
HEP expertise.

« The Kaggle Tracking Challenge is a great
opportunity to enter this brave new world.
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Kalman Filters and Recurrent NNs

Classic Data Assimilation algorithm (1960, NASA)
lteratively track evolution of a dynamic system
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LHCDb Trigger Retina Processor

Jw x + hits
X I receptors

Y j S |\ B Transform to track parameter space

22K bins, one “receptor” per bin

m

S

FPGA implementation
1mus tracking
Offline-quality performance
Certainly good enough for
seeding

(Simone Stracka, Pisa) .
) BERKELEY LAB
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Neuromorphic Computing

“Spikey” from Qualcomm’s NPU'’s
Electronic Visions for robots.
group in Heidelberg

IBM’s
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IBM TrueNorth
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Merolla+ Science (2014)

* 1 million programmable neurons
e 256 million synapses

* 4096 neurosynaptic cores

* Uses 70mW per chip

* 5.4 billion transistors

e Spiking rate >1000Hz

A single chip can process color video in real-
time while consuming 176,000 times less
energy than a current Intel chip performing
the exact same analysis. Note the Intel chip
can not do this analysis in real-time and is in
fact 300 times slower!
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