

Hands on with MINERVA

Lecture 3

Kate Shaw International Centre for Theoretical Physics INFN Udine/ICTP ATLAS Group

5th Egyptian School of High Energy Physics, Zewail City, Cairo 14th – 19th November 2015

Search for W+ and W- bosons using the ATLAS Detector

What is the final state?

How does ATLAS detect these event?

Website: http://kjende.web.cern.ch/kjende/en/index.htm

Search for W+ and W- bosons using the ATLAS Detector

- > Whats your signal?
- > What are the backgrounds?
- > What cuts do we need to isolate the signal?

Website: http://kjende.web.cern.ch/kjende/en/index.htm

Physics Analysis

> TODAY: We will look at events using the event display teaching program: MINERVA

- Each event we apply cuts to see if the event is signal or background, and count them
- In analysis: We use C++ and ROOT to loop over thousands/millions of events
 - \succ The code loops over the events and applies the cuts
 - Ones that pass as signal are then put into histograms
 - > Do for the Monte Carlo simulation (SIGNAL, backgrounds)
 - Do for the data does it fit?

Website: http://kjende.web.cern.ch/kjende/en/index.htm

Physics Analysis

W Production

Production of different W particles

Background

 $Z \rightarrow \mu^+ \mu^+$ (or $Z \rightarrow e^+ e^+$)

there is **TWO OPPOSITELY CHARGED Leptons** (either an electron or a positron or a muon or an anti-muon),

Multiple Jets

there are multiple jets (collections of hadrons particles)

CUTFLOW

Isolates W -> lepton + neutrino events

What do WW events look like?

Learning MINERVA

In DIR: minerva2014/events/exercise2-2014.zip

Exercise

•Use the link online:

http://kjende.web.cern.ch/kjende/en/wpath_exercise2.htm

•There are 10 events to look at – each of a different type

 $\label{eq:started} \begin{array}{l} \bullet W^+ \rightarrow e^+ + v_e \\ \bullet W^- \rightarrow e^- + v_e \\ \bullet W^+ \rightarrow \mu^+ + v_\mu \\ \bullet W^- \rightarrow \mu^- + v_\mu \\ \bullet WW^- \rightarrow l^- + v_l + l^+ + v_l \\ \bullet Background from jets, \ Z \rightarrow e^+ e^-, \ Z \rightarrow \mu^+ + \mu^- \end{array}$

Load up events from "exercise2.zip" in ATLANTIS (OPEN) In DIR: minerva2014/events/exercise2-2014.zip

Distinguish between background and signal events!
Aim to correctly identify all of them

Proton Structure

Proton Structure

- Proton does not react as a whole
- Different methods of production of

u

- Decays 1/3 of the time W decays into a lepton and neutrino (electron, muon or tau)
- Protons are complicated at high energies!

Proton Structure

Comparison with results of the ATLAS collaboration (from 2011):

Measurement of the W -> lnu and Z/gamma* -> ll production cross sections in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector *)

Search for the Standard Model Higgs boson in the $H \rightarrow WW(*) \rightarrow lvlv$ decay mode using 1.7 fb-1of data collected with the ATLAS detector at $\sqrt{s} = 7$ TeV **)

*) Authors: The ATLAS Collaboration (Submitted on 5 Dec 2011): <u>http://arxiv.org/abs/1109.5141.pdf</u>
 **) Authors: The ATLAS Collaboration (24 Aug 2011): ATLAS-CONF-2011-134

$W \rightarrow + v$					Background	WW+0J
	positron	electron	antimuon	muon	Duringround	cand.
Total	77885	52856	84514	55234.0	21930.0	469
Total W+/W-	number of W+	162399	number of W-	108090		
IW+I/IW-I	1.50		±	0.01		