

Accelerators Revealing the QCD Secrets, 3-5 September 2016, Thessaloniki, Greece

HL-LHC PROJEC



## HL-LHC Accelerator Physics Challenges

### Y. Papaphilippou Accelerator and Beam Physics group Beams Department CERN

Thanks to G. Arduinig, O. Brüning and S. Fartoukh for the material provided

# Content

- HL-LHC goal and performance optimisation
- HL-LHC challenges
  - Triplet magnets
  - Optics challenges: the ATS
  - Beam-Beam aspects
  - Crab-cavities
  - Collimation
  - Vibrations
- Performance projections



## **From LHC to HL-LHC**



## **Goal of High-Luminosity LHC**



# implying an integrated luminosity of 250 fb<sup>-1</sup> per year,

# design oper. for  $\mu \delta$  140 ( $\rightarrow$  peak luminosity 5 10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup>)

➔ Operation with levelled luminosity!

→ 10 times the luminosity reach of first 10 years of LHC operation

### LHC upgrade goals: Performance optimisation

Luminosity recipe (round beams):

$$L = \frac{n_b \times N_1 \times N_2 \times g \times f_{rev}}{4\rho \times b^* \times e_n} \times F(f, b^*, e, S_s)$$

 $\rightarrow$  1) maximize bunch intensities  $\rightarrow$  Injector complex  $\rightarrow$  2) minimize the beam emittance Upgrade LIU  $\rightarrow$  3) minimize beam size (constant beam power);  $\rightarrow$  triplet aperture  $\rightarrow$ 4) maximize number of bunches (beam power);  $\rightarrow 25$ ns  $\rightarrow$  5) compensate for 'F'; → Crab Cavities → minimize number of  $\rightarrow$  6) Improve machine 'Efficiency' unscheduled beam aborts Y. Papaphilippou - Thessaloniki, 04/09/2016

### LHC Limitations and HL-LHC Challenges

- Technical bottle necks (e.g. cryogenics) 
   New addit. Equipment
- Insertion magnet lifetime and aperture:
   New insertion magnets and low-β with increased aperture
- Geometric Reduction Factor: 
   SC Crab Cavities
   New technology and a first for a hadron storage ring!
- Performance Optimization: Pileup density 

   Lumi levelling
   devise parameters for virtual luminosity >> target luminosity
- Beam power & losses → additional collimators in DS region
- Machine effciency and availability:
   # R2E → removal of all electronics from tunnel region
   # e-cloud → beam scrubbing (conditioning of surface)
   # UFOs → beam scrubbing (conditioning of surface)



### HL-LHC Upgrade Ingredients: Triplet Magnets

- Nominal LHC triplet: 210 T/m, 70 mm coil aperture
  - → ca. 8 T @ coil
  - → 1.8 K cooling with superfluid He (thermal conductivity)
  - → current density of 2.75 kA / mm<sup>2</sup>
- At the limit of NbTi technology (HERA & Tevatron ca. 5 T @ 2kA/mm<sup>2</sup>)!!!

LHC Production in collaboration with USA and KEK

**Critical Surface for NbTi** 





HL-LHC PROJECT

# **HL-LHC technical bottleneck**

### Radiation damage to triplet magnets at 300 fb-1



# Radiation damage to triplet magnets Tungsten blocks

Need to replace existing triplet magnets with radiation hard system (shielding!) such that the new magnet coils receive a similar radiation dose @ 10 times higher integrated luminosity!!!!! → Shielding!

Requires larger aperture!



technology

Capillaries

- New magnet technology
- → 70mm at 210 T/m → 150mm diameter 140 T/m 8T peak field at coils → 12T field at coils (Nb<sub>3</sub>Sn)!!!

Y. Papaphilippou - Thessaloniki, 04/09/2016

## **New Interaction Region layout**



Thick boxes are magnetic lengths -- Thin boxes are cryostats



### Optics Challenges & the ATS scheme

- Lowering β<sup>\*</sup> needs magnets of larger aperture, but also new hardware or sophistication (crab-cavity, flat optics,...) to mitigate the luminosity loss due to the Piwinsky angle.
- $\rightarrow$  How to produce this  $\beta^*$ ???

This is the aim of the ATS scheme which solves many optics limitations coming from the overall LHC ring.

- 1. Optics matchability to the arcs:
- Some IR quads going to 0 T/m, others to max. field (200T/m).
- Simply the matching section becomes too short at some point.
- Correctability of the chromatic aberrations induced, not only Q', but also Q", Q",..., and off-momentum β-beating:
- limitations from the arc sextupole strength (<600A).</li>

S. Fartoukh, PRSTAB 16, 111002, 2013



# The ATS scheme

### S. Fartoukh, PRSTAB 16, 111002, 2013

• A <u>new injection optics</u> ( $-\pi/2$  FODO lattice  $\rightarrow$  new integer tunes)

### • A <u>squeeze in 2 steps</u>

- 1) An "almost" standard squeeze, the Pre-squeeze:
- $\rightarrow$  acting on the matching quads of IR1 and IR5,
- $\rightarrow$  with new matching constraints on the left/right IR phase
- → till reaching some limits (sextupoles, matching quadrupoles)
- **2)** A further reduction of  $\beta^*$ , **<u>the Squeeze</u>**:
- $\rightarrow$  acting on IR2/8 for squeezing IR1 and IR4/6 for IR5,
- $\rightarrow$  inducing <u> $\beta$ -beating bumps in sectors 81/12/45/56</u> to boost the sextupole efficiency at constant strength.

$$\rightarrow \beta_{\text{Squeeze}}^{*} = \beta_{\text{Pre-Squeeze}}^{*} \times \frac{\left(\hat{\beta}_{\text{Arc}}\right)_{FODO}}{\left(\hat{\beta}_{\text{Arc}}\right)_{Mismatched}}$$



**Injection** optics  $\beta^* = 5.5$  m at IP1 and IP5 (150 T/m IT gradient)



-I HC PROJE

**Pre-squeezed** optics  $\beta^* = 40$  cm at IP1 and IP5 (150 T/m IT gradient)



**Round Squeezed** optics  $\beta^* = 10$  cm at IP1 and IP5 (150 T/m IT gradient)













#### **HL-LHC Upgrade Ingredients:** Crab Cavities: Crab Cavities $F(b^*)$ **Geometric Luminosity** Reduction Factor: of 0.9 0.8 geometrical reduction factor 0.7 0.6 Independent for each IP effective cross section 0.5 0.4 0.3 $F = \frac{1}{\sqrt{1 + Q^2}}; \quad Q \circ \frac{q_c S_z}{2S_r}$ 0.2 0.1 Noise from cavities to Ō $b^*$ 0.2 0.4 0.6 8 beam?!? Challenging space Crab Cavity Crab Cavity constraints: requires novel compact Crab Cavity Crab Cavity cavity design CERN

## **HL-LHC Crab Cavities designs**



### And excellent first results: RF Dipole Recent results from Measurements @ CERN





### **Testing Crab Cavities with Beams**

### Crab Cavity Test Installation in the SPS:

- Vital to gain feedback from operation with beam before launching of cavity production for HL-LHC → need results before LS2!!!
- Tight and ambitious schedule but doable!
- → Visualization and planning now
- → Preparation in EYETS 16/17
- → Installation YETS 17/18





→ vital for project to be able to launch Crab cavity production by LS2!!! (international partners!!!)

## SPS beam test: a critical step for Crab Cavities



# LHC Challenges: Beam Power

- Jnprecedented beam power: Worry about beam losses:
- Failure Scenarios -> Local beam Impact
  - → Equipment damage
  - ➔ Machine Protection
- Lifetime & Loss Spikes → Distributed losses
  - ➔ Magnet Quench
  - → R2E and SEU
  - ➔ Machine efficiency



# **DS collimators – 11 T Dipole**



## Prototyping of cryogenics bypass @ CERN



Prototyping of the by-pass crystostat (QTC) for the installation of a warm collimator in the cold dispersion Magnet: prototypes reached 11 T field in March 2013!

### IR1 & IR5 Underground Civil Engineering



Y. Papaphilippou - Thessaloniki, 04/09/2016

## **Vibration Tolerances for Operation**

Lessons from Civil Engineering Test Drills and Earth Quakes On Vibration Tolerances:

• Driven by worries about vibrations from the HL-LHC civil engineering





• GEOTHERM2020 a renewable energy production project by the Canton of Geneva



Y. Papaphili





- → order of micrometer tolerance for vibrations!
- → Schedule that allows CE construction during LS2!!

tollow electron lens for halo depletion!

Y. Papaphilippou - Thessaloniki, 04/09/2016

### **New Schedule: HL-LHC CE during LS2**







### **Performance Projections up to HL-LHC**



## **HL-LHC Baseline Parameters**

| Peremeter f n. N.                                                                    | N<br>2 | ominal LHC<br>(design | HL-LHC 25ns<br>(standard)  | HL-LHC 25 ns<br>(BCMS) | HL-LHC<br>50ns |
|--------------------------------------------------------------------------------------|--------|-----------------------|----------------------------|------------------------|----------------|
| Beam energy in collision [TeV] $I = \gamma \frac{Jrev rb}{V} \frac{Vb}{Vb}$          | _ R    |                       |                            | 7                      | 7              |
| N <sub>b</sub> $L = \gamma 4\pi\varepsilon_n\beta^*$                                 | n      | ,<br>1.15E+11         | 2.2E+11                    | ,<br>2.2E11            | ,<br>3.5E+11   |
| n <sub>b</sub>                                                                       |        | 2808                  | 2748 <sup>1</sup>          | 2604                   | 1404           |
| Number of collisions at IP1 and IP5                                                  | od     | 2808                  | 2736                       | 2592                   | 1404           |
| N <sub>tot</sub>                                                                     | eu     | 3.2E+14               | 6.0E+14                    | 5.7E+14                | 4.9E+14        |
| beam current [A]                                                                     |        | 0.58                  | 1.09                       | 1.03                   | 0.89           |
| x-ing angle [µrad]                                                                   |        | 285                   | 590                        | 590                    | 590            |
| beam separation [o]                                                                  |        | 9.4                   | 12.5                       | 12.5                   | 11.4           |
| β <sup>*</sup> [m]                                                                   |        | 0.55                  | 0.15                       | 0.15                   | 0.15           |
| ε <sub>n</sub> [μm]                                                                  |        | 3.75                  | 2.50                       | 2.50                   | 3              |
| ε∟ [eVs]                                                                             |        | 2.50                  | 2.50                       | 2.50                   | 2.50           |
| r.m.s. energy spread                                                                 |        | 1.13E-04              | 1.13E-04                   | 1.13E-04               | 1.13E-04       |
| r.m.s. bunch length [m]                                                              |        | 7.55E-02              | 7.55E-02                   | 7.55E-02               | 7.55E-02       |
| IBS horizontal [h]                                                                   |        | 80 -> 106             | 18.5                       | 18.5                   | 17.2           |
| IBS longitudinal [h]                                                                 |        | 61 -> 60              | 20.4                       | 20.4                   | 16.1           |
| Piwinski angle                                                                       |        | 0.65                  | 3.14                       | 3.14                   | 2.87           |
| Geometric loss factor R0 without crab-cavity                                         |        | 0.836                 | 0.305                      | 0.305                  | 0.331          |
| Geometric loss factor R1 with crab-cavity                                            |        | (0.981)               | 0.829                      | 0.829                  | 0.838          |
| beam-beam / IP without Crab Cavity                                                   |        | 3.1E-03               | 3.3E-03                    | 3.3E-03                | 4.7E-03        |
| beam-beam / IP with Crab cavity                                                      |        | 3.8E-03               | 1.1E-02                    | 1.1E-02                | 1.4E-02        |
| Peak Luminosity without crab-cavity [cm <sup>-2</sup> s <sup>-1</sup> ]              |        | 1.00E+34              | 7.18E+34                   | 6.80E+34               | 8.44E+34       |
| Virtual Luminosity with crab-cavity: Lpeak*R1/R0 [cm <sup>-2</sup> s <sup>-1</sup> ] |        | (1.18E+34)            | 19.54E+34                  | 18.52E+34              | 21.38E+34      |
| Events / crossing without levelling w/o crab-cavity                                  |        | 27                    | 198                        | 198                    | 454            |
| Levelled Luminosity [cm <sup>-2</sup> s <sup>-1</sup> ]                              |        | -                     | 5.00E+34                   | <b>5.00E34</b>         | 2.50E+34       |
| Events / crossing (with levelling and crab-cavities for HL-LF                        | IC)    | 27                    | 138                        | 146                    | 135            |
| Peak line density of pile up event [evt/mm] (max over stable bea                     | m)     | 0.21                  | 1.25                       | 1.31                   | 1.20           |
| Levelling time [h] (assuming no emittance growth)                                    |        | Y. <u>P</u>           | apaphilippoy <sub>.3</sub> | Thessaloniki           | 1, 04,18.0/201 |

**Collision values** 

# **Reserve slides**



### **R2E SEU Failure Analysis - Actions**



### 2008-2011

- Analyze and mitigate all safety
   relevant cases and limit global
   impact
- 2011-2012
  - Focus on equipment with long downtimes; provide shielding
- LS1 (2013/2014)
  - Relocation of power converters
- LS1 LS2:

- Equipment Upgrades
- LS3 -> HL-LHC
  - Remove all sensitive equipment from underground installations

### The critical zones around IP1 and IP5

3. For collimation we also need to change the DS in the continuous cryostat:11T Nb<sub>3</sub>Sn dipole

LODA C

Q10

iin wat

2. We also need to modify a large part of the matching section e.g. Crab Cavities & D1, D2, Q4 & corrector  New triplet Nb<sub>3</sub>Sn required due to:
 Radiation damage
 Need for more aperture

Changing the triplet region is not enough for reaching the HL-LHC goal!

 More than 1.2 km of LHC !!
 Plus technical infrastructure (e.g. Cryo and Powering)!! CMS