

Improved anchoring of SSS with vacuum barrier to avoid displacement

Ofelia Capatina (speaker), Katy Foraz (coordinates all the activities), Antonio Foreste, Vittorio Parma, Thierry Renaglia, Jean-Pierre Quesnel

LHC Performance Workshop - Chamonix 2009, 3 February 2009

Overview

- Introduction
- Initial requirements and actual SSS supporting
- Updated requirements and improved supporting design
- Planning and costs
- Next weak point?
- Conclusion

Introduction

 Incident on 19th of September 2008 => failure of some supports of SSS in sector 3-4 due to longitudinal loads

Initial requirements and actual SSS supporting

• Each SSS is installed on 1 jacks for longitudinal alignment + 2 for transversal alignment; The 3 jacks are used for vertical alignment

• Alignment done by geometers after installation

Initial requirements and actual SSS supporting

• Each SSS is installed on 1 jacks for longitudinal alignment + 2 for transversal alignment; The 3 jacks are used for vertical alignment

Vacuum sectorisation for one LHC sector

- Vacuum barrier in 13 SSS / sector (Q11R&L, Q15R&L, Q19R&L, Q23R&L, Q27R&L, Q31R&L, Q33R)
- A total of 104 SSS with vacuum barrier

Initial requirements and actual SSS supporting

- Vacuum vessel/vacuum barrier designed for 0.15 MPa internal pressure
- Supporting system should withstand loads induced by differential pressure on both sides of vacuum barrier:
 - Nominal operation: up to $\Delta p = 0.1 \text{ MPa}$
 - Exceptional : up to $\Delta p = 0.15$ MPa
- $\Delta p = 0.1 \text{ MPa}$ across vac. Barrier $\rightarrow 80 \text{ kN}$ at the jacks (tested value)

- Supporting system should withstand
 - Nominal operation up to 80 kN longitudinally ($\equiv 0.1$ MPa)
 - Exceptional operation up to 120 kN longitudinally (≡ 0.15 MPa)
- Actual SSS supporting system:
 - Designed for 80 kN and tested in the tunnel for a longitudinal load up to 90 kN
 - Test done once in surface building up to 120 kN (not documented)

Sonia Bartolome et al., tests done in the LHC tunnel, June 2003

- Actual SSS supporting system:
 - Tested failure tensile loads of anchors120 kN to150 kN
 - Ok for nominal operation
 - Failure limit for exceptional conditions (~ 150 kN)
 - No concrete damage observed

- Sect.3-4 incident: estimate (see pres. Ph. Lebrun session 01) pressure inside vessels (on one side of vacuum barrier): 0.7 MPa (x 4.6 design pressure)
 - => Improvements of security relief valves proposed (see pres. V. Parma session 04) different form warm / cold sectors
- Updated design pressure (see pres. V. Parma session 04)

- Updated design pressure 0.3 MPa for SSS anchoring. Why?
 - Covers an important area of possible events
 - Very high but feasible value of longitudinal loads to be considered for the new anchor design - 240 kN;
 - The chain of elements vacuum barrier / cold foot / jack should be equilibrated
 - Design of vacuum barrier for 0.15 MPa with security factor 3 => confident that it withstands 0.3 MPa
 - Cold foot tests showed no failure up to 70 kN equivalent to 0.3 MPa

- Requirements for the design of the improved SSS anchors
 - Withstand longitudinal load of 240 kN
 - Possibility to install the system on SSS already on jacks
 - Reduced space under the SSS very difficult for drilling
 - Accessibility for alignment
 - Estimation of realignment every year
 - Allow thermal contraction of vacuum tank in case of accident
 - Allow space for other foreseen equipment under the SSS
 - Uninstalling the system should allow SSS removal if needed
 - Transport / installation zones to be taken into account
 - Optimize price
 - Feasibility within general planning

- Several solutions have been studied
 - 1st solution distribution of the longitudinal load among the 3 jacks

- Several solutions have been studied
 - 1st solution distribution of the longitudinal load among the 3 jacks
 - No cryostat thermal contraction allowed

- 2nd solution bloc additional fixation to the ground only shear loads transmitted to the floor
- Poor accessibility to jacks for alignment

- 3rd solution bloc additional fixation to the ground and to the cryostat only shear loads transmitted to the floor
- Necessitates special installation procedure (monitored by geometers) to avoid vacuum tank deformation

- 4rd solution - the final one

- Final solution reaction loads
- Contact on single jack guaranteed

- Final solution reaction loads
- Ground
 fixation
 system tested
 this morning
 in SX4

Reaction 9 009 3:00 PM				Nonc	ommerci	US ial use o
of "Force React finition	ion 9"		100			
t of "Force React finition be ation Method	ion 9 ^{rt} Force Reaction Boundary Condition	\				
of "Force React inition e ation Method ndary Condition	Force Reaction Boundary Condition Fixed Support 4					
of "Force React inition e ation Method ndary Condition ions	Force Reaction Boundary Condition Fixed Support 4					7
of "Force React inition # tion Method ndary Condition ions Jlt Selection	Force Reaction Boundary Condition Fixed Support 4 All					
of "Force React inition e ation Method ndary Condition ions ult Selection ilay	Force Reaction Boundary Condition Fixed Support 4 All All Time Points				-	
of "Force React inition e ation Method ndary Condition cions ult Selection alay ximum Value	Force Reaction Boundary Condition Fixed Support 4 All All Time Points Over Time					
of "Force React finition re ation Method indary Condition tions ault Selection alay ximum Value IX X Axis	Force Reaction Boundary Condition Fixed Support 4 All All Time Points Over Time 65.367 N					
of "Force React finition ation Method undary Condition tions sult Selection alay xinum Value X Axis Y Axis	Force Reaction Boundary Condition Fixed Support 4 All All Time Points Over Time 65.367 N -1.2261e+005 N					
rof "Force React finition ation Method indary Condition tions ault Selection play wimmum Value 1 X Axis Y Axis Z Axis	Force Reaction Force Reaction Boundary Condition Fixed Support 4 All All Time Points Over Time 65.367 N -1.2261e+005 N 70930 N					
of "Force React inition e ation Method ndary Condition ions ult Selection lay kimum Value (Axis ' Axis ' Axis ' Axis ' otal	Force Reaction Boundary Condition Fixed Support 4 All All Time Points Over Time 65.367 N -1.2261e+005 N 70930 N 1.4165e+005 N					
of "Force React inition e ation Method ndary Condition cions ult Selection olay ximum Value X Axis Z Axis Z Axis Total imum Value C	Force Reaction Boundary Condition Fixed Support 4 All All Time Points Over Time 65.367 N -1.2261e+005 N 70930 N 1.4165e+005 N Over Time					
e of "Force React finition pe ation Method undary Condition tions sult Selection play xiximum Value I X Axis Z Axis Z Axis Total nimum Value C X Axis	Ion 9" Force Reaction Boundary Condition Fixed Support 4 All All Time Points Over Time 65.367 N -1.2261e+005 N 70930 N 1.14165e+005 N Ver Time 65.367 N					• z_×
of "Force React finition se ation Method indary Condition tions sult Selection play xinum Yalue I X Axis Y Axis Z Axis Total immum Yalue C X Axis Y Axis	Ion 9" I Force Reaction Boundary Condition Boundary Condition Fixed Support 4 All All All Time Points Over Time 65.367 N -1.2261e+005 N 70930 N 1.4165e+005 N 1.4165e+005 N Over Time 65.367 N -1.2261e+005 N -1.2261e+005 N Over Time				7	- z ×
Is of "Force React efinition ype ccation Method pundary Condition ptions esult Selection splay aximum Value I] X Axis] Y Axis] Z Axis] Total inimum Value C] X Axis] Y Axis] Z Axis	Ion 9" I Force Reaction Boundary Condition Boundary Condition Fixed Support 4 All All All Time Points Over Time 65.367 N -1.2261e+005 N 70930 N 1.4165e+005 N Ner Time 65.367 N 65.367 N -1.2261e+005 N 70930 N 1.4261e+005 N 70930 N 1.2261e+005 N					, z ×

ΕN

- Final solution one ground fixation system tested in SX4
- Up to 380 kN applied longitudinally and 230 kN applied vertically (traction) during 10 min (1.5 x design load if only one side charged)
 => no visible damage observed

O. Capatina EN/MME et al., Cha

- Prototype
 - Manufacturing complete prototype w7-8
 - Test prototype w9
- LHC installation
 - Hypothesis
 - · Conservative hypothesis that drilling not allowed when liquid helium
 - Installation = same risk as alignment operations (ok with liquid helium)
 - Drilling 2 weeks / sector starting in week 11 for sector 2-3
 - Overall installation 2 weeks / sector within the general planning
 - Alignment check of SSS after system installation: a total of 25 days ok with general planning

 104 systems to be i 	manufactured and installed					
 – System: 104 x 	520'000 CHF					
 Ground fixation: 		42'000 CHF				
 Manpower 						
 Drilling: 	104 x 4 x 6 x 62 CHF	155'000 CHF				
 Installation: 	104 x 2 x 8 x 62 CHF	103'000 CHF				
 Equipment for d 	27'000 CHF					
– Alignment:		20'000 CHF				
 Total for 8 sector 	ors	867'000 CHF				
Rmq transport operations not included						
		25				

- The anchoring of SSS with vacuum barrier have been discussed
- If new cryostat design pressure 0.3 MPa instead of 0.15 MPa, what about the other equipments?
- DFBA

- DFBA
 - Calculations done by A. Bertarelli in 2006 for a vessel design pressure of 0.15 MPa absolute (0.05 MPa relative)
 - The new design pressure of 0.3 Mpa (0.2 MPa relative) multiplies the applied loads by a factor 4
 - Shuffling module vacuum vessel with the new design pressure the tank will plastify locally but should not get to failure
 - The "negative VODAL SOLUTION MAY 23 2006 08:47:43 fixator" (external SITB = OT NO. TTME=1 =.467E-03 support) will fail SMN =22623 SMX =.316E+10 Fixation very difficult to improve due to lack of space Alessandro Bertarelli DFBA calculations done in 2006 .105E+09 .349E+08 .698E+08 .140E+09

174E+08

523E+08

872E+08

122E+09

157E+09

Conclusions

- The design of the improved anchoring of SSS with vacuum barrier has been presented
- It was designed to withstand 240 kN longitudinally, equivalent to 0.3 MPa of differential pressure on both sides of the vacuum barrier
- The system is foreseen to be installed in "warm" sectors too as an additional safety device
- The installation of the equipments will be within the global planning
- The total cost will be of about 867'000 CHF, transport not included
- Open questions
 - What happens if Δp > 0.3 MPa ? : cold foot, vacuum barrier damaged before external anchoring damage...
 - We are very confident that vacuum barrier and cold foot withstand the load equivalent to 0.3 MPa but it has never been demonstrated
 - Next week point could be the DFBA...
 - What about other elements (such as all "special" cryostats of the LSS, jumper vacuum barrier ...)?

Thank you !

... in particular Lucio for his patience and advices