Risks due to UPS malfunctioning

Impact on the Superconducting Circuit Protection System

Hugues Thiesen

Acknowledgments: K. Dahlerup-Petersen, R. Denz, A. Funken, J. Gomez, V. Montabonnet, D. Nisbet, M. Zerlauth and HCC team

Chamonix 2009
Contents

- UPS overview
- UPS for Superconducting Circuit Protection System (CPS)
- Impact of UPS malfunction
- Actual Situation
- Conclusions
Total UPS systems for LHC: > 60 (8 MVA)
Total UPS systems for CPS: > 28 (56 UPS units)
UPS overview

- **Human Safety**
 - Access*
 - Fire detection*, ODH*
 - Radiation Monitor*, etc...

- **Beam Systems**
 - Beam Instrumentation
 - BIC, FMCM
 - Beam Dump System
 - RF
 - Vacuum, etc...

- **Technical Network, etc...**

- **Cryogenic System**

- **SC Circuit Protection System**
 - Power Converters
 - PIC
 - Energy Extraction System (EE)
 - CLQD, GQD and MPS

* = internal UPS

Standard Systems use in all CERN accelerators

Specific Systems use in LHC
UPS for CPS

- **Particularities of Superconducting Circuits**
 - High current: up to 13 kA
 - High energy stored: up to 1.4 GJ
 - High current density: up to 1000A/mm²
 - High time constant: up to 400 sec (EE switches opened).
 - 250 s (4 min) for RB to decrease the current from 13 kA to 1 kA
 - 800 s (14 min) for RQX to decrease the current from 7 kA to 1 kA

(UPS specification = 10 min. of autonomy)

- **Functionalities require for CPS**
 - Protect magnets
 - Protect Current Leads
 - Protect Bus-Bars
 - Slow Abort the PCs in case of cryogenic warning
 - Avoid to start without all systems fully operational
 - Save data for analyzing
Each UPS can deliver the requested power (10 min of autonomy)

- 2 orders of redundancy
 - If one UPS fails the load is supplied by the second UPS
 - If the second UPS fails the load is supplied by the electrical network

- Weak point = breakers (the number of breakers must be optimized and selectivity must be guaranteed)

- Characteristics of UPS Network = Characteristics of General Network (see next slide)
Main Parameters of the LHC 400/230V Electrical Network

- Nominal values
 - Nominal voltage: 400/230 V ± 10%
 - Nominal frequency: 50 Hz ± 0.5 Hz
 - THD: 5%
 - Voltage unbalance: 2%

- Transients
 - Peak mains surges: 1200 V for 0.2 ms
 - Mains over voltage: 50% of Un for 10 ms
 - Voltage drops: 50% of Un for 100 ms

Transients = Normal Operation
UPS for CPS

- UPS connected to the PIC
 - Software link for PPermit
 - "Not possible" to start in case of one UPS warning/fault
 - Hardware link for Energy Extraction (Fast_Abort)
 - Fast abort in case of two UPS warnings/faults (e.g. batteries mode)
UPS for CPS

4 redundant UPS systems to protect 1 sector
- 1 UPS in UA => IT, IPQ and IPD
- 1 UPS in RE => C12L to C34L (77 MB and 24 MQ)
- 1 UPS in RE => C34R to C12R (77 MB and 24 MQ)
- 1 UPS in UJ => IT, IPQ and IPD
As for any other systems, the UPS systems can malfunction

- **Diagnostic malfunction**
 - Supervision malfunction
 - Interlock malfunction
 - Etc...

- **Power malfunction**
 - Degradation of the output voltage
 - 1 phase loss
 - 3 phases loss
 - Partial network loss
 - Etc...

- Interlock malfunction

- Total Loss of the output power
Impact of UPS malfunction

Interlock malfunction

- If the interlock system of one UPS does not work
 - The PIC does not stop the powering if the second UPS stops working (UPS system in by-pass).

No action before loss of the UPS system output power
Impact of UPS malfunction

Power malfunction

- Warm Part
- Cold Part

SC Circuit Protection System
- Three protection systems
 - The Magnet Protection System (MQD + QHPS)
 - The CL Protection System
 - The Global Protection System
- The Energy Extraction System
- The PIC
- The PC

Risks due to UPS malfunctioning, H. Thiesen, Chamonix 2009
- UPS for power converter
 - Only DCCTs and FGC for high current power converters are on UPS (MB, MQ, IPQ, IPD and IT). The power part is not supplied by UPS
 - Gateway and computing network are on UPS to assure the control of the PCs
- **Loss of FGC and DCCT**
 - The power converter switches off
 - The CR fires (not need power)
 - PC PM data is lost
 - The quench loop does not open (except if water failure)

- **Loss of GW**
 - After 10mn, all power converters connected on this GW switch off
 - Their CR fire
 - PC PM data is stored inside FGCs

- **Loss of Computing Network**
 - The control of the PC is lost (Only PC with PIC can be switched off).
 - The 60A PCs can not be switched off
Impact on EE system

- Loss of EE system Electronic
 - The Energy Extraction Switch opens
 - The Quench Loop opens
 - The power converter switches off and its CR fires
 - The EE system PM data is lost

- Loss of communication with the CCC
 - Nothing happens
 - The EE system remains fully operational
Impact on CLPS system

- Loss of CLPS Electronic
 - The Quench loop opens
 - The EE switch opens
 - The power converter switches off and its CR fires
 - The CLPS PM data is lost

- Loss of the communication with the CCC
 - Nothing happens
 - The CLPS remains fully operational
Impact on GQPS system

- Loss of GQPS Electronic
 - The Quench loop opens
 - The EE switch opens
 - The power converter switches off and its CR fires
 - The GQPS PM data is lost

- Loss of the communication with the CCC
 - Nothing happens
 - The GQPS remains fully operational
Impact on MQPS system (1)

- MQPS
 - Implemented only for the high current circuits (MB, MQ, IPQ, IPD and IT)
 - For the IPQ, IPD and IT circuits, the MQPS protects also the busbars
 - Single phase powering

- QHPS
 - The QHPS are not in the Quench Loop and can be only fired by the QD
 - 4 QHPS per magnets and 1 is needed to protect correctly the magnet
 - The QHPS are connected to the Power Permit

Risks due to UPS malfunctioning, H. Thiesen, Chamonix 2009
- **Loss of QD/QHPS (same single phase feeder)**
 - The Quench loop opens
 - The EE switch opens
 - The power converter switches off and its CR fires
 - The MQPS PM data is lost
 - To avoid a "sector quench" in case of UPS loss the QHPS are not fired. The consequence is the magnet is not protected during the current decay.

- **Loss of the communication with the CCC**
 - Nothing happens
 - The MQPS system remains fully operational
Impact on PIC

- **PIC Level**
 - All HW interlock loops of this PIC open
 - All EE switches of concerned circuits open
 - All power converters of concerned circuits switch off and their CR fire
 - The PIC PM data after the event is lost

- **Loss of the communication with the CCC**
 - Slow Abort after 30 seconds
 - The currents of concerned circuits decays to 0 A
 - The PIC remains fully operational
* To avoid a "sector quench" in case of UPS loss the QHPS are not fired.
The consequence is the magnet is not protected during the current decay.
Actual Situation

- **Tested**
 - UPS IST
 - Devices IST

- **No tested**
 - Devices on UPS network (verification on going during AUG tests)
 - UPS with theirs loads
Conclusions

- UPS has not been tested with its load. Tests of UPS systems (with load) are recommended.
- New devices will be installed on UPS network (nQPS system). "AUG tests" in operational conditions are recommended.
- UPS is important for the LHC safety. Annual tests after each shut down are recommended.
- High Current magnets are not protected in case of UPS powering failure. This issue must be clarified by MPWG (to fire or not to fire?).
- QHPS are not interlocked. This issue must be clarified by MPWG (software interlock could be implemented?).
- The PM files are lost in case of UPS powering failure.
- 10 min of UPS autonomy are not enough to protect correctly the RQX circuits (1.8 kA after 10 min). 20 min of autonomy are recommended.
- What is the situation for the other systems?