Crystals for experiment on the SPS beam collimation

Deflection angles \rightarrow for successful collimation and its registration

Collimation \rightarrow to be sufficiently far from the collimator edge \rightarrow deflection angles are achievable for LHC

Registration → direct particles to the sensitive area of detectors \approx 20 mm → over offset distance and dead area of detectors

With bend angle α positions of channeling pick at RP1 and TAL

- 100 μ rad \rightarrow 2.4 mm , 2 mm
- 150 μ rad \rightarrow 4.8 mm , 6.5 mm
- 200 μ rad \rightarrow 7.3 mm , 11 mm

Impact parameters of 2 mm are too small

Optimum value for deflection angles – 150 ÷ 200 µrad

Deflection by channeling – single bent crystal

(111) Si, length L=1 mm, bend angle α = 150 µrad

Deflection by MVR – sequence of bent crystals

7 crystals (111) Si, L=0.5 mm, α = 250 µrad, $\delta\theta$ =-20 µrad

Impact parameters

Edge fractions as a function of θo

Deflection by MVR – sequence of bent crystals

10 crystals (110) Si, L=1 mm, α = 217 µrad, $\delta\theta$ =-16 µrad

CH deflection for θ_0 =90 µrad

Dependences on orientation angle

Single bent crystals for collimation

ST9 (Ferrara) - strip of (110) Si crystal, L=2 mm It was used for R-dependence studies of VR

There are the data for deflection due to channeling for different R

ST9 should be bent with R=13.3 m to receive α = 150 µrad and angle should be measured before the installation

Bending without large torsion !

Alternative - use strip with L=3 mm to increase radius \rightarrow R=20 m It was a good agreement with simulation for ST4, R=18.5m

Single bent crystals for collimation

(111) Silicon crystal QM, L=2 mm – PNPI Crystal was bent with α = 150 µrad and studied with 400 GeV protons

Crystal for channeling mode

Height 10 mm Width 2 mm Length 2 mm

Tests with 400 GeV protons

Goniometer position (µrad)

Cut (0.4x0.4mm) x=10800/11200 y= 6800/ 7200

Cut (0.4x0.4mm)

~40 mcrad/mm

x=11800/12200

y= 6800/ 7200

Saddle

Cut (2.0x4.0mm) x=10800/11800 y= 5000/ 9000

-10800 -10750 -10700 -10650 -10600 -10550 -10500 Goniometer position (μrad) Sequence of bent crystals for 120-GeV proton beam collimation

PNPI - sequence of seven (111) silicon crystals QM, L=2 mm, $\alpha \approx 250 \mu$ rad Crystal alignment was partly fulfilled and studied with 400-GeV protons

Multi-crystal (7)

Under testing with X-rays.

Next set of 7 bending devices and 7 crystals is under preparation

Sequence of bent crystals for 120-GeV proton beam collimation

IHEP – multi-strip (111) Si crystals with 7 strips, L=1 mm, α = 500 µrad with convex and concave bending were studied with 400-GeV protons

Horisontal angular scan near (110) skew planes

Triangle form of MVR area – acceptance area for 7VR is narrowed up to 0 Convex bend – bad unparallel sequence

Trapezium form of MVR area – acceptance for 7VR should be sufficiently wide Concave bend – nearly parallel sequence Sequence of bent crystals for 270-GeV proton beam collimation

Ferrara – multi-strip (110) Si crystals with 14 and 15 strips, L=1 mm were studied with 400-GeV protons

Crystal radii R= 4.61 m, 2.14 m and 1.47 m

About 11 strips for R=4.61 m coherently deflect protons, angle 130 µrad Angular acceptance for MVR was larger than 150 µrad

Strip number is sufficient to receive kick ≈ 150 µrad for 270-GeV protons

Angular acceptance for MVR should decrease by $N\Delta\theta vr \approx 60 \mu rad$ but still be about 100 μrad