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ACAT 2008 Workshop

® |38 worldwide participants

® Plenary sessions (18 talks)

® 3 Parallel Sessions
|. Computing Technology (27 talks)
2. Data Analysis (26 talks)
3. Computation in Theoretical Physics (21 talks)

* Round Table discussion (on multi-core)

See agenda on Indico: http://indico.cern.ch/conferenceTimeTable.py?confld=34666



http://indico.cern.ch/conferenceTimeTable.py?confId=34666
http://indico.cern.ch/conferenceTimeTable.py?confId=34666

Qutline

® Highlights from Data Analysis, algorithms
and tools (session 2)

® MultiVariate analysis methods

- one plenary talk + 9 parallel talks

. Parallellzatlon ‘multi- core
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Multi-Variate Methods

® Very nice plenary presentation from H.
Prosper on MVA

® Various presentation on multivariate analysis
methods in Session 2 (Data analysis,

algorithms and tools)
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Examples of MVA
(from H. Prosper talk)

Example — Energy Measurements

Regression using
neural networks

to estimate single
particle energies.

Sce poster by

Serger Gleyzer
CMS Collaboration

Multivarnate Methods
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Examples of MVA
(from H. Prosper talk)

Example — Single Top Search
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Examples of MVA
(from H. Prosper talk)
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PDFs modeled with
neural networks,
fitted using a
genetic algorithm

ACAT 08




Multivariate Methods in Particle

Physics Today and Tomorrow
(H. Prosper)

Introduction

A Short List of Multivariate Methods

Random Grid Search
Linear Discriminants
Quadratic Discriminants
Support Vector Machines

Kernel Density Estimation
Neural Networks

Bayesian Neural Networks
Decision Trees

Random Forests

Genetic Algorithms

Multivanate Methods Harnison B. Prosper



Multivariate Methods in Particle

Physics Today and Tomorrow
(H. Prosper)

Outstanding Issues

Tuning Methods
» [s cross-validation sufticient to choose the function
class (number of leaves, number of trees, number of
hidden nodes etc.)?

Verification
« How can one confirm that an n-dimensional density 1s
well-modeled?

« How can one find, characterize, and exclude, discrepant
domains in n-dimensions automatically?

Multivanate Methods Harrison B. Prosper



Multivariate Methods in Particle

Physics Today and Tomorrow
(H. Prosper)

Summary

Multivariate methods can be applied to many aspects of
data analysis.

Many practical methods, and convenient tools such as
TMVA, are available for regression and classification.

All methods approximate the same mathematical entities,
but no one method is guaranteed to be the best in all
circumstances. So, experiment with a few of them!

Several issues remain. The most pressing is the need for

sound methods, and convenient tools, to explore and
quantify the quality of modeling of n-dimensional data.

Multivarnate Methods Harrison B. Prosper




Multivariate Methods in Particle

Physics Today and Tomorrow
(H. Prosper)

Verification

Discriminant Verification
D) = p(x1$) / [ plalS) + plxiB) ] Verification — Example

Therefore, if we weight, event-by-event, an admixture of N O O

signal and N background events by the function f{x) B B B Y B B 300—
S, (x) = N p(x]S) flx) [
Bw(‘r) - ‘NFP(J|B) f{x}

-]

then the sum

S“.'(‘r) |I Bw(‘r) - *Nr (p(‘1|S) + p(‘l‘B)) f{x) - *\rp(.x|S)J i'c'!
we should recover the n-dimensional signal density.
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Cyan plot: weighted signal Green plot: weighted background
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TMVA

® Most popular packages in the community

® New version next year with various nice
new features:

® Support for regression in addition to

. X A R N ¢
& e - - -

A awiad Sis=ts o

B :w.‘,L 8 ie “ AL L% _{ > R x . Byl S \

4 iy i AT % LAR- R SRR TP, A W RS e Lo it

- ' Sy e . R 3 LR g Ty b o < . r2 P2y Lo R T R d

-3 B ” SR ’-."_f,,v,'\‘.} _,041.‘5 _.,:_‘..‘.' iy e (97N ';‘ Aoy iy A OIS Y ¥ = 4
2 : :

I . I t.
' » A ‘-:"“;i " r".'.‘ L ”‘-"""-’— S i ‘ .
- 4 T o FVD. ‘;("r" e Y \-‘.,:. b, Dokt Pg‘i'-vl N S e
y Y 1 Y " bt
5 o ¢ 1.,1 ,.p'. a4 i : SN L e i S -‘r'b., b




TMVA (J. Stelzer)

Multivanate Regression

Atarget vs. target on test sample for different “classifiers”

o]

“Classifiers” try to describe the
functional dependence

Example: predict the energy
correction of jet ciusters

Classification: RN>R- {0,1,..,N}

Regression: RN=>R

Training: instead of specifying

sig/bkgr, provide a regression target
Multi-dim target space possible

Does not work for all methods!

Example: target as function of two variables
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PDE FOAM (D. Dannheim)

PDE-Foam

Self-adapting binning method to divide d-dimensional phase space in finite
number of hyper rectangles (cells)

Algorithm based on Monte-Carlo Generator Package “Foam” by
Stanislaw Jadach (Comput.Phys.Commun. 152 (2003) 55-100)

Foam of cells: Few large cells in phase-space regions with constant likelihood
density, many small cells in regions with high gradients of likelihood density

Preserve only binned averaged density information after training phase
= Fast and memory efficient classification, independent of training sample size
=» Reduces sensitivity to statistical fluctuations for small training samples

Input density foam representation

Discriminant

3.Nov.2008 Dominik Dannheim (CERN)




Others MVA Packages

STATISTICAL PACKAGES
SPR R WEKA

http://cran.r-project.org/ http://www.cs.waikato.ac.nz/~ml/weka/

v Supported on Unix v Supported on many platforms ¥ Supported on many platforms

v Command line v Command line v Command line and GUI
v/ C++ v R orimplemented in C, C++ v/ Java
v Faster on big datasets and interfaced into R v Slow on big datasets
v Many different FOMs v Implemented in R is slow, but ¥ Easy graphical interface, fast
v More flexible: boosting and easy to interpretate. Otherwise, to learn

bagging an arbitrary faster but less interpretable. v/ Less flexible

sequence of classifiers, + Extensive on-line documentation

generalized forward + Huge number of statistical tools

addiction, multiclass v Less flexible

learner with any kind of

classifier, etc...

SPR better for more complex analyses.
R / WEKA good for easier analyses.

ACATZ2008, G. Palombo




RIPPER
(R. Britsch)

® RI|PPER algorithm
® classification of events using collection of if-then rules
(direct rule based classifier)
® |Instance weighting according to cost
® assign cost to wrongly (or corrected) classified instances

® Use Bagging

* Multilayer perceptron alporithm
* Decision tree alporithm
* RIPPER algorithm

2
&
%
o
]
2

Example: LHCb MC A—p+ + -

.7 nE
Trua Positve Rale




Examples of MVA Applications

Tau ldentification in ATLAS using MV tools (M. Wolter)

sSummary

Tau identification significantly improved by using multivariate analysis tools.
All of the presented classification methods are performing well:

Cuts — fast, robust, transparent for users.

Projected Likelihood — a popular and well performing tool

PDE RS —robust and efficient, but large samples of reference candidates
needed.

Neural network — fast classification while converted to the C function after
training,

BDT - fast and simple training, insensitive to outliers, good performance.
Relatively new in HEP

Multivariate analysis is necessary, if it is important to extract as much information
from the data as possible.

For classification problems no single "best” method exists. What matters - is also
simplicity and speed of learning and fast (and robust) classification.
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Examples of MVA Applications

C.Saout: b-Tagging Algorithms in the CMS

Several different algorithms implemented, with different characteristics:

Track Counting: sort tracks by descending Signed |IP Significances (3D)
» robust, simple and fast — suitable for HLT

Jet probability: total probability that all tracks originate from PV

Soft-lepton tagger, using electrons or muons

> |ess reliance on IP and on tracker, fast, suitable for HLT
Simple Secondary Vertex: =T

> significance of flight distance
» Robust wrt to misalignment

Combined Secondary Vertex:

» Using all variables in likelihood or NN
» Highest performance, but more complex

)

;Edemnnsi:ratinn
- purpose only

(ignore absolute/ '}
10°- values) j++ /
A

light flavour mistag rate
o
T

r ,l. .
10°"
b-jet efficiency
Thomas Speer 7" November 2008 - p. 21




Paradigm (S. Gleyzer)

A Decision Making Framework for HEP

Decision making tool based on
critical information

Relevant PARADIGM criteria

relative quality of

Relative Variable Importance RVI variable (signed)
\Variable Selection
Classifier Improvement
. Global Loss
Global Loss Function GF Function

Variable Reduction
Classifier Selection

Lower the GF: lower loss of classification power
from removing a subset {S’} from {V}




Paradigm (s. Gleyzer)

Relative
Vanable

Reduced

"- Parameter

Reduce Varables
Choose Classifier

¢ PARADIGM is classifier-choice

Solid MVA

*  Any classifier type can be chosen (Neural Nets, Decision Trees, Ana |ys is
Rule Ensemble and so on) as long as some form of a

performance measure can be assigned to all classifiers
For Ex. area under the ROC curve



FEATURE SELECTION (FS)

* Magic Gamma-ray Telescope data: 10 variables — 4 irrelevant

0.25

Quadratic Loss

o
(=1
[4,]

=
=1
=]

=
X
=]

i
T

Selection of the most powerful discriminating
features (variables)

Usually not all the features are useful for the
classification problem. In modern applications,
where the number of instances (events) can be
huge, it is important to evaluate whether it is
possible to find irrelevant features.

FS addresses the problem of reducing the feature
set to the smallest subset that gives the same or
better quality of separation between signal and
background as the full set does.

Al Vs
BVars —a—

Signal Acceptance

1

0.0 oM 0.1
2 3 4 8§ B 7 a 10
Background Acceptance

Number of Variables

GOAL OF THE ANALYSIS AND DATA

Classification Loss

Comparing FS methods implemented in SPR to each
other and with other methods implemented in statistical
packages R and Weka.

Comparing our results with previously published results
for the same datasets.

HEP datasets usually have many events with few input
variables, but typically these datasets are not public.

We use the datasets Magic Telescope, Cardiac
Arrhythmia, WDBC, WBC, Colic Horse which are

(with the exception of Magic Telescope) much smaller

than typical HEP dataset. But they are all available
publicly at:
www.ics.uci.edu/~mlearn/MLRepository.html

I'r mia aataset. Multl-Class Classitcation problem-— classes
» 261 variables, 250 irrelevant!
045
Features set accuracy (%) p-value
940
Best 11 Add2Reml 80.95
“ Best 11 Add1Rem0 76.19 0.49 (-)
0 Best 3 Add2Rem1 71.90 0.04 (-)
Best 4 Add2Reml 75.24 0.22 (-)
All 261 SPR 75.95 0.10 (-)
220
015

7" November 2008 - p. 26




* Reproduction: Genetic operators applied on chromosomes

Gene Expression Programming
(L. Teodorescu)

+ Evolutionary computation simulates the natural evolution on a computer
> Generate a population of individuals with increasing fitness to environment

- GEP: Works with two entities, chromosomes and expression trees
Candidate solution represented ET encoded in a chromosome:
by an expression tree (ET) read ET left - right

and top - down
(a=b) (c+d) 1
* b

/N Q*-+abed

@ e ot L. Teodorescu: Enhanced Gene Expression Programming
¢ ®

Chromosome — has one or more genes of equal length Several new developments since ACATO7:
Gene — head: contains both functions and terminals (length h) Different Ordering of Symb0|5 in chromosome:

- tail: contains only terminals (length 1)

- » Keeps the proximity of the genetic material during the translation process
> Recombination: exchange parts of two chromosomes — expected lower destructive effect of the genetic operators
» Mutation: change the value of a node

> Transposition: move part of chromosome to another location ContrO"Ed GVO|Uti0n thr{jugh fitnESS threshold
» Eliminate the weak individuals from the evolution process
. . . O
Dynamic classification thresholdu

5.5

Example: BaBar MC K_ production
» Threshold value adapted to ) — S ————
s s . I.;:‘ /
each individual -

Improvements:

» earlier convergence
» slightly higher accuracy

Accuracy %e

GEP
— GEP-MUKT

00 TS TG00 125000 15000 17500 200040
Number of generation




Data Analysis

® |Improvements in ROOT fitting and
minimization (L.M.)

® (Goodness of fit test for weighted
histograms (poster by N. Gagunashvili)

® Parallelization of fitting and minimization
(A. Lazzaro)

® split likelihood calculation (in RooFlt) and/or
derivative calculation in Minuit2 =

® used MPI| and/or openMP




Visual Physics Analysis

(Tatsiana KLIMKOVICH)

® VISPA: a novel concept for visual physics analysis

Structure of Physics Analysis

f\ ﬂ n
m VISPA Key Components

! VisualPXL - File Browser, Event Editor & Process Modelling

e PXL: C++ package providing underlying
functionality

e PyPXL: Python interface to PXL
* Module steering system

m.
1m—
1900~
1200
|m.u
s,
~
m:
powss

* Autoprocess: automatic decay chain
reconstruction

e use GUI to design analysis
e can export to Python (create Python analysis modules)



Languages,
Interpreters, etc..

® T.Johnson:Java based software for High-
Energy and Astro-physics
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C++ and Data

(Axel Naumann)

® Overview of C++ reflection and dictionary

® Dictionary size and coming optimizations
Retlection Data Optimization

......................................................................................................................................... O A A A A AR A A A A A A A A A AR A A A A A A A A A A A A ARl A A A A A A A A A A A A A A AR

ROOQOT will soon serialize reflection objects

Proof of concept already implemented
* Reduce disk space

* Improve build (no libraries)

* Unload when done

O Introspection

30%

40% [0 Reflection

‘ Reflection
/ ‘ O Saved Stubs

15%

15%

001 BIE
ROOT @ ACAT 2008 * Axel Naumann (CERN), Philippe Canal (Fermilab) 2008-11-04 22




Session 3
(Computation in Theoretical Physics)

® Geant4 talks (V.N.lvanchenko)

® Recent Progress of Geant4 Electromagnetic
Physics and Readiness for the LHC Start

® Hadronic Physics in Geant4: Improvements
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Blue Brain Project
(F. Schurmann

® EPFL project in collaboration with IBM

® Reverse-engineer the mammal brain

® reconstruct and simulate neurons based :
on large amount of experimental data




High-Precision Arithmetic and

Mathematical Physics
(D. Bailey, LBL)

o ZL 402 1
- 16k \8k+1 8k+4 8k+5 8k+6

n=0

S see http://en.wikipedia.org/wiki/Bailey-Borwein-Plouffe formula
® Examples of applications

requiring more extended
precision (double-double or High-precision Arithmetic is Indispensible in —\1 A

Modern Scientific Computin )
quad'dOUbIe) P g ..
o supernovae simulations State-of-the-art large-scale scientific calculations involving highly
nonlinear systems often require numerical precision beyond conventional

® climate modeling 64-bit floating-point arithmetic.

: g Few physicists, chemists and engineers are experts in numerical
¢ Planetar)' orbit calculations analysis, so software-based high-precision arithmetic is often the best

4 remedy for severe numerical round-off error.

® Coulomb N-body atomic y

] . The emerging “experimental” methodology in mathematics and
system simulations mathematical physics often requires hundreds or even thousands of
digits of precision.

Double-double, quad-double and arbitrary precision software libraries are
now widely available (and in most cases are free).

High-level C, C++ and Fortran-90 interfaces facilitate the conversion of
large scientific programs to use this software.

High precision software

Non-commercial (free) software:
Total Significant
Type Bits Digits Support
Double-double 128 32 DDFUN90, QD.
Quad-double 256 64 QD.
Arbitrary Any Any ARPREC, MPFUN90, GMP, MPFR.

Commercial software: Mathematica, Maple.



