The production of Single top quark in ATLAS (LPSC & SDU collaboration)

FCPPL workshop – 22 March 2009, Wuhan

Benoit Clement, Julien Donini, Annick Lleres Arnaud Lucotte, Fairouz Malek (LPSC/CNRS) Cunfeng Feng, Jin Wang, Xueyao Zhang (SDU)

1/ Motivation for Single-top Physics at the LHC2/ Strategy and Cross-section measurements of single-top processes in ATLAS

- Past measurements of three single-top channels
- Activities with data-like data (TopMix) in ATLAS

3/ Implications on technical aspects in ATLAS

- Validation of Monte Carlo generators (NLO, LO)
- Validation and tests of parton density functions
- Production of Derived Physics Data for analyses

4/ Summary

Top Physics Context at the Tevatron

Top Quark @ TeVatron ... Besides the discovery... Stringent test of QCD and the EW sector – Top mass is known at <1% level – QCD production mechanism at ~12% – V-A couplings and W polarization at ~20% – CKM matrix |Vtb| > 0.78 @ 95% CL

...and at the LHC

~1000 selected pairs a day

- ~a few 10 single-top a day
- S/B more favorable than TeVatron

Top as a Tool

Commissioning with early data:

- in situ JES determination
- b-tagging performance calibration

Missing ET

Top as a precision test of SM

Mass, cross-section, properties analyses – Measurements in all channels – Theoretically limited very early Systematics limited analyses early – Data driven analyses

Use of MVA techniques mandatory

Top as a probe to new Physics

- In production or decays :
- High mass resonance
- Anomalous couplings
- Top and charged Higgs
- Top and SUSY

Cunfeng Feng

Cunfeng Feng

Why Single-top measurement at the LHC ?

Properties of the Wtb vertex : Determination of $\sigma(pp \rightarrow tX)$, Γ(t→Wb) **Direct determination of |Vtb|** Test of V-A, top polarization **Probe to new physics :** Anomalous couplings, FCNC Extra gauge-bosons W' (GUT, KK) Extra Higgs boson (2HDM) Single-top is one of the main background to ...

... Higgs physics with jets...

Single-top in ATLAS : strategy

Common pre-selection

Inclusive lepton trigger ~80% efficiency

- at least one isolated high p_T lepton
- at least two jets
- at least one b-tagged jet
- missing ET

All single-top analyses are

- Background dominated w/ S/B ~few %
- Systematics on background dominate !
 - \rightarrow Use of data driven techniques mandatory
 - → Necessity to enhance purity : use of MVA !

Analyses Strategy

MVA vs CutBased selections Cross-section extraction using $\sigma = D-B/\epsilon L$ Selection optimization:

- Cuts on MVA outputs that minimize systematics

- Use of toy MC to generate D,B as Poisson
- and D,B, ϵ for all sources of systematics

Cunfeng Feng

Single-top at the LHC : t-channel

Single-top at the LHC : W+t channel

Single-top at the LHC : s-channel

Cunfeng Feng

Combination of single-top analyses

Simultaneous fit of the three single-top cross-sections

Cunfeng Feng

Monte Carlo Generator Validation

- Event selection
 - Lepton: N=1, pT>30GeV
 - Jet: N ≥2, pT>30GeV
- AcerMC vs MC@NLO: Herwig
 - s: agreed well
 - t: MC@NLO → low jet multiplicity
- Herwig vs Pythia: AcerMC
 - s: agreed well
 - t: Herwig \rightarrow low Njet, more forward jet
- AcerMC+Pythia vs MC@NLO+Herwig
 - s: no significance difference
 - t: MC@NLO+Herwig → low Njet, hard forward jet

Julien Donini, Cunfeng Feng, Arnaud Lucotte

Cunfeng Feng

Tests of Parton Density Function

• New CTEQ66

• Change: CTEQ6->CTEQ6.6

- X-sections of processes with light quark scattering at x~10⁻² higher.
- X-sections of processes induced by high x gluon are few percent lower.
- Uncertainty reduced from 5% to 3.5% due to inclusion of HERA data.
- 44(40) eigenvectors used in CTEQ6.6 (6)
- MC@NLO34
 - Ecm=10TeV
 - Mtop=172.5GeV

			<u> </u>
Channel	CTEQ6M[pb]	CTEQ66[pb]	Change [%]
t channel	133.9	132.5	-1.05
s channel	7.019	7.133	+1.62
Wt channel	38.25	37.12	-2.95

Cross section for PDF central value (Cunfeng Feng)

Impact of Parton Density Function on $\boldsymbol{\sigma}$

Errors associated with central value are calculated with CTEQ master formula

$$\Delta X_{\max}^{+} = \sqrt{\sum_{i=1}^{n} [\max(X_{i}^{+} - X_{0}, X_{i}^{-} - X_{0}, 0)]^{2}}$$
$$\Delta X_{\max}^{-} = \sqrt{\sum_{i=1}^{n} [\max(X_{0} - X_{i}^{+}, X_{0} - X_{i}^{-}, 0)]^{2}}$$

cl	hannel	+Δσ[pb]	-Δσ[pb]	Max(Δσ/σ) ×100
	CTEQ6	1.56	2.19	> 1.64
L	CTEQ66	1.84	1.88	1.42
	CTEQ6	0.25	0.28	4.04
n	CTEQ66	0.21	0.23	3.17
\\/	CTEQ6	2.00	2.01	5.24
vvt	CTEQ66	1.89	1.87	5.09

Asymmetry

Cross section Uncertainty

decrease a little for CTEQ66

No significant different CTEQ6 & CTEQ66 for t channel.

Cunfeng Feng

Cunfeng Feng

Monte Carlo Validation : eg. of t-channel

Compared at parton level for t channel

 agreed well for PDF CTEQ6m and CTEQ66 central value.

Ntuple production in ATLAS

Central production of ntuples

- Aim for small size, single top specific data format.
- Developed by LPSC/CNRS ATLAS single top team
- Produce flat ntuple by skimming, thinning, slimming ATLAS reconstruction data
- This ntuple format is official and used by the ATLAS Top group

Julien Donini, Arnaud Lucotte, Annick Lleres, Jin Wang

Summary

An exciting Top physics Program :

- "Rediscovery of top", calibration, ...
- Top as a probe to New physics

Single top one of the major top physics field

- Discovery of individual single-top processes at the Tevatron is imminent
- LHC will have to do precision measurements ...
- ...so that searches to New Physics can be made
- Collaboration LPSC + SDU is fruitful :
 - Physics aspects: transfer of expertise, analysis techniques...
 - Technical aspects: Monte Carlo Validation, Production of ATLAS Derived Physics Data for analyses

Thanks !

Backup

Wt channel with MC@NLO

- Single top associated production
 - LO: $gb \rightarrow W+t$
 - NLO:
 - ttbar resonances can appear, also contribution to Wt production

b

b

- σ_{Wt} get a huge correction! Due to contamination from tT
- Two approaches for defining Wt
 - Diagram remova (DR)I: tT removed at amplitude level
 - Diagram subtraction (DS): tT removed at x-section level
 - Results from DR and DS agree well (arXiv: 0805.3067v1)

MC@NLO for MC08 single top

• New run-number defined for single top MC 08

ah ann al	t channel		s channel			
cnannei	t->b e nu	t->b mu nu	t->b tau nu	t->b e nu	t->b mu nu	t->b tau nu
Run No.	108340	108341	108342	108343	108344	108345

• Main parameter:

- top: mass=172.5GeV; width=1.7GeV
- W: mass= 80.403GeV; width=2.141GeV
- PDF set: CTEQ6m (10000)
- Full simulation is ready
- Single top MC plan in 2009
 - MC@NLO34: W+t channel was included
 - LHAPDF: CTEQ6.6 released
 - Validation sample has been produced

Results of t channel cross section

Sequential Cut Analysis

N signal and BG evts (1 fb⁻¹)

Uncertainty on signal x-section

process	$N(1 f b^{-1})$		
ST t-ch	AcerMC	MC@NLO	
	1479.2 ± 57.5 2	2138.1 ± 71.8	
ST s-ch	$27.1 \pm$	1.4	
ST Wt-ch	125.0 ± 8.6		
$t\bar{t}$	3051.3 ± 67.5		
Wbb	76.0 ± 8.6		
W+jets	894.7 ± 30.3		
Total Bgd	4174.0 ± 75.0		
S/B	0.35	0.51	

Source of uncertainty	$\Delta \sigma / \sigma (\%)$	
	AcerMC	MC@NLO
Poisson	5.1~%	3.9%
Stat	6.3~%	5.5%
JES	23.2%	21.2%
BTag	28.7%	21.4%
XSerr	23.6%	17.2%
ISR/FSR	6.4~%	6.0%
PDF	12.1%	9.2%
LeptonID	$3.8 \ \%$	3.0%
Trigger	$3.8 \ \%$	3.0%
Lum	18.9%	15.1%
Total	51.4%	41.1%

MC@NLO: small improvement in x-section uncertainty due to larger amount of signal (+45%).

Julien Donini

Results of t channel cross section

Multivariate Analysis

N signal and BG evts (1 fb⁻¹)

process	N(1 fb^{-1})		
ST t-ch	AcerMC MC@NLO		
	$621.0 \pm 36.5 991.7 \pm 59.9$		
ST s-ch	2.6 ± 0.4		
ST Wt-ch	10.8 ± 2.5		
$t\bar{t}$	235.0 ± 18.6		
Wbb	5.8 ± 2.4		
W+jets	123.5 ± 10.4		
Total Bgd	377.7 ± 21.7		
S/B	1.64 2.63		

Source of uncertainty	$\Delta \sigma / \sigma(\%)$	
	AcerMC	MC@NLO
Poisson	5.1%	3.7%
Stat	6.8%	6.4%
JES	1.4%	9.7%
BTag	7.6%	7.4%
XSerr	5.4%	3.4%
ISR/FSR	6.0%	5.6%
PDF	3.6%	2.7%
LeptonID	1.6%	1.4%
Trigger	1.6%	1.4%
Lum	8.0%	6.9%
Total	17.3%	18.2%

MC@NLO: no improvement despite 60% increase of signal. JES syst becomes dominant due to different jet multiplicity.

Julien Donini

20