

B_c studies at LHCb

Yuanning GAO¹, <u>Jibo HE²</u>, Patrick ROBBE², Marie-Hélène SCHUNE², Zhenwei YANG¹

1. Tsinghua University, Beijing

2. Laboratoire de'l Accélérateur Linéaire, Orsay

2nd FCPPL workshop

B_c decays

- B_c : Meson family formed by \overline{b} and c^a
- B_c meson's decays
 - Excited states: Strong or EM to B⁺_c
 - ▶ Ground state *B*⁺_c: Weak
- B⁺_c decay modes

•
$$\bar{b} \rightarrow \bar{c}W^+$$
, e.g., $J/\psi \pi^+$, $J/\psi \ell^+ v_\ell$

- $c \rightarrow sW^+$, e.g., $B_s^0 \pi^+$, $B_s^0 \ell^+ \nu_\ell$
- $c\bar{b} \rightarrow W^+$, e.g., $c\bar{s}$, $\tau^+ v_{\tau}$
- B⁺_c lifetime predictions
 - Inclusive rates or ∑(exclusive rates)
 - $au(B_c^+)_{
 m SR} = 0.48 \pm 0.05 \
 m ps$

^aCharge conjugates implied in this presentation

B_c spectrum and production

- *B_c* spectrum
 - Estimated using potential models
- B⁺_c mass
 - Potential: 6.2-6.4 GeV/c²
 - pQCD: 6326⁺²⁹₋₉ MeV/c²
 - Lattice QCD: 6278(6)(4) MeV/c²
 - B_c production
 - At hadron collider: $gg \rightarrow B_c + b + \bar{c}$
 - B⁺_c cross section
 - Considering the contributions of the decays of the excited states, $\sigma(B_c^+) \sim 0.4 \ \mu b$
 - $\sigma(B_c^+)_{\text{LHC}}/\sigma(B_c^+)_{\text{Tevatron}} \sim O(10)$

Taken from CERN-2005-005

Experimental status

Collab.	$\mathscr{L}_{\text{int}} \left[\text{pb}^{-1} \right]$	Mode	Signal event	Mass [MeV/c ²]	Lifetime [ps]
CDF	110	$J/\psi\ell^+ v$	$20.4_{-5.5}^{+6.2}$	$6400 \pm \! 390 \!\pm \! 130$	$0.46^{+0.18}_{-0.16}\pm0.03$
D0	210	$J/\psi\mu^+X$	$95 \pm 12 \pm 11$	$5950^{+140}_{-130}\pm340$	$0.45^{+0.12}_{-0.10} \pm 0.12$
CDF	360	$J/\psi\pi^+$	14.6 ± 4.6	$6285.7 \pm 5.3 \pm 1.2$	_
CDF	360	$J/\psi e^+ v_e$	238	—	$0.463^{+0.073}_{-0.065}\pm0.036$
CDF	2400	$J/\psi\pi^+$	108 ± 15	$6275.6 \pm 2.9 \pm 2.5$	—
D0	1300	$J/\psi\pi^+$	54 ± 12	$6300 \pm 14 \pm 5$	—
D0	1300	$J/\psi\mu^+X$	<mark>881</mark> ±80	—	$0.448^{+0.038}_{-0.036}\pm 0.032$
CDF	1000	$J/\psi\ell^+ v$	—	_	$0.475^{+0.053}_{-0.049}\pm0.018$
		Theo	pretical prediction	6278(6)(4)	0.48 ± 0.05
LHCb	1000	$J/\psi\pi^+$	450(?)	?	?
			pprox 108 $ imes$ 10/2.4		
LHCb	1000	$J/\psi\mu^+ u_\mu$	6700(?)	—	?
			\approx 881 \times 10/1.3		

• Only $B_c^+
ightarrow J/\psi(\mu^+\mu^-)X$ studied

3

(日)

$B_c^+ ightarrow J/\psi(\mu^+\mu^-)\pi^+$

◆□ → ◆圖 → ◆臣 → ◆臣 → ○臣

$B_c^+ ightarrow J/\psi(\mu^+\mu^-)\pi^+$ event selection

Final states

- Track $\chi^2/\mathrm{ndf} < 4$
- $\Delta \ln L_{\mu\pi}(\mu) > -5$
- $\Delta \ln L_{\pi K}(\pi) > -5$
- ▶ p_T(µ) > 1.0 GeV/c
- *p*_T(π) > 1.6 GeV/c
- IPS(π)>3.0 ^a

^aIPS =
$$\sqrt{\chi^2_{IP}} \sim$$
 IP/ σ_{IP}

- J/ψ selection
 - Mass: (3.04, 3.14) GeV/c²
 - Vertex fit quality: $\chi^2/\text{ndf} < 9$
 - IPS(J/ψ)>3.5
- B_c^+ selection
 - Vertex fit quality: $\chi^2/\mathrm{ndf} < 4$
 - ▶ p_T(B⁺_c) > 5.0 GeV/c
 - ► IPS(B_c⁺)<3.0</p>

Signal yields and background level

Assuming

- Cross section $\sigma(B_c^+)$: 0.4 μ b
- BR $(B_c^+ \rightarrow J/\psi \pi^+) = 1.3 \times 10^{-3}$
- Selection results in the $B_c^+ \pm 3\sigma$ mass window

Description	Result
Total efficiency ε_{tot} Signal yield (1 fb ⁻¹) B/S @ 90% CL	$\begin{array}{c}(1.013 \pm 0.017)\% \\ \sim 310 \\ [1,2]\end{array}$

→

B_c^+ mass measurement

- Signal events taken from the full Monte Carlo simulation, background events generated by the toy MC.
- Signal described by a Gaussian, background by 1st order polynomial.
- Un-binned maximum likelihood method, fitting result (1 fb⁻¹):
 - $M(B_c^+) = 6399.6 \pm 1.7 \text{ MeV}/c^2$ (input: 6400 MeV/c²).

Jibo, HE (LAL, Orsay)

Signal lifetime distribution

• Proper decay time *t* calculated as:

$$t = M_{B_c^+} \frac{L}{P_{B_c^+}}$$

• In theory, *t* follows $E(t|\tau)$. But the detector is not perfect, in practice, *t* can be described by

$$E(t|\tau) \otimes G(t|\sigma_t, S_t)$$

 S_t is the scale factor of σ_t to account for the effects that the σ_t can be over- or under-estimated.

• Acceptance $\varepsilon(t)$ required to account for the effects caused by the lifetime biased cuts

$$f(t,\sigma_t|\tau,\mathsf{S}_t) = \varepsilon(t) \Big[E(t|\tau) \otimes G(t|\sigma_t,\mathsf{S}_t) \Big]$$

Jibo, HE (LAL, Orsay)

(日)

B_c^+ lifetime fitting

- To reduce the dependence of the lifetime measurement on the B⁺_c p_T distribution (theoretical model), p_T(B⁺_c) divided into two intervals, 5-12 GeV/c and > 12 GeV/c.
- Doing the mass lifetime combined fitting in the two $p_{\rm T}$ intervals simultaneously, $\tau(B_c^+) = 0.438 \pm 0.027$ ps (input: 0.46 ps).

10/21

$B_c^+ ightarrow J/\psi(\mu^+\mu^-)\mu^+ u_\mu$

◆□ → ◆圖 → ◆臣 → ◆臣 → ○臣

$B_c^+ ightarrow J/\psi(\mu^+\mu^-)\mu^+ v_\mu$ event selection

Final states

- Track χ²/ndf < 4</p>
- $p_{\rm T}(\mu_{{
 m J}/\psi}) > 1.5~{
 m GeV/c}$
- $\Delta \ln L_{\mu\pi}(\mu_{J/\psi}) > -5$
- $p_{\rm T}(\mu_{\rm B_c^+}) > 3.0 ~{\rm GeV/c}$
- $\Delta \ln L_{\mu\pi}(\mu_{\rm B_c^+}) > 0$
- B_c^+ selection
 - Mass: (3.2, 4.25)||(4.47, 6.4) GeV/c²
 - * The hole (4.25, 4.47) is caused by the clone μ

 $M_{\mu_1\mu_2\mu_1} = \sqrt{2M_{J/\psi}^2 + M_{\mu}^2} pprox 4379.5 \text{MeV}/c^2$

- Vertex fit quality: $\chi^2/\text{ndf} < 4$
- $p_{\rm T}({\rm J}/\psi\mu^+) > 6.0 ~{\rm GeV/c}$

- Mass: (3.04, 3.14) GeV/c²
- Vertex fit quality: $\chi^2/\text{ndf} < 9$

Signal yields and background level

Assuming

- Cross section $\sigma(B_c^+)$: 0.4 μ b
- BR($B_c^+ \rightarrow J/\psi \mu \nu_\mu$)=1.9 × 10⁻²
- Selection results

Description	Result
Total efficiency ε_{tot} (1.09	$02 \pm 0.019)$ %
Signal yield (1 fb ⁻¹)	~ 4920
B/S @ 90% Cl	[4_10]

B 1 4 B 1

Pseudo lifetime

• Pseudo proper decay time t* calculated as:

$$t^* = M_{\mathrm{J}/\psi\mu^+} rac{L}{P_{\mathrm{J}/\psi\mu^+}}$$

• K factor needed to correct for the missing energy:

$${\cal K}=rac{M_{{
m J}/\psi\mu}'/P_{{
m J}/\psi\mu}'}{M_{{
m B}_{
m c}^+}'/P_{{
m B}_{
m c}^+}'}$$

Superscript "/" represents the Monte Carlo truth.

• Signal lifetime PDF written as:

$$f(t^*, \sigma_{t^*} | \tau, S_{t^*}) = H(K) \otimes \left[E(t^* | \tau K) \otimes G(t | \sigma_{t^*}, S_{t^*}) \right]$$

H(K) is the K factor distribution.

Jibo, HE (LAL, Orsay)

H(K) in different $M_{\mathrm{J}/\psi\mu^+}$ ranges

Jibo, HE (LAL, Orsay)

Bc studies at LHCb

B_c^+ lifetime fitting

- *H*(*K*) obtained from another sample (generator phase only), 100K events.
- τ , S_t, f_{prompt} and f_{sig} float, the other parameters are fixed.
- $\tau(B_c^+) = 0.441 \pm 0.025$ ps (input: 0.46 ps)

(日)

Collab.	$\mathscr{L}_{int} \left[pb^{-1} \right]$	Mode	Signal event	Mass [MeV/c ²]	Lifetime [ps]
CDF	110	$J/\psi\ell^+ v$	$20.4_{-5.5}^{+6.2}$	$6400 \pm \! 390 \!\pm \! 130$	$0.46^{+0.18}_{-0.16}\pm0.03$
D0	210	$J/\psi\mu^+X$	$95\pm12\pm11$	$5950^{+140}_{-130}\pm 340$	$0.45^{+0.12}_{-0.10} \pm 0.12$
CDF	360	$J/\psi\pi^+$	14.6 ± 4.6	$6285.7 \pm 5.3 \pm 1.2$	
CDF	360	$J/\psi e^+ v_e$	238	—	$0.463^{+0.073}_{-0.065}\pm0.036$
CDF	2400	$J/\psi\pi^+$	108 ± 15	$6275.6 \pm 2.9 \pm 2.5$	<u> </u>
D0	1300	$J/\psi\pi^+$	54 ± 12	$6300 \pm 14 \pm 5$	—
D0	1300	$J/\psi\mu^+X$	881 ± 80	—	$0.448^{+0.038}_{-0.036}\pm 0.032$
CDF	1000	$J/\psi\ell^+ u$	—	—	$0.475^{+0.053}_{-0.049}\pm0.018$
LHCb	1000	$J/\psi\pi^+$	310	\pm 1.7(stat.)	\pm 0.027(stat.)
LHCb	1000	$J/\psi\mu^+ u_\mu$	4920	—	\pm 0.025(stat.)

(日)

- $B_c^+
 ightarrow J/\psi(\mu^+\mu^-)\pi^+$ from the 1 fb^-1 of data
 - ▶ Signal yield ~ 310, *B*/S<2 @ 90% CL
 - Mass measurement precision: ±1.7 (stat.) MeV/c²
 - Lifetime measurement precision: ±0.027(stat.) ps
- $B_c^+
 ightarrow J/\psi(\mu^+\mu^-)\mu^+ v_\mu$ from the 1 fb⁻¹ of data
 - Signal yield ~ 4920, B/S<10 @ 90% CL
 - Lifetime measurement precision: ±0.025(stat.) ps
- More work will be done

Backup

æ

ヘロン 人間 とくほど 人間と

Event selection in the two $p_T(B_c^+)$ intervals

 Selection cuts re-optimized, lifetime cuts in the high p_T region loosened.

Description	Cut value		
p_{T} intervals of B_c^+	5-12 GeV/c	\geq 12 GeV/c	
$\operatorname{IPS}(\pi^+)$	> 3.0	> 2.0	
$\operatorname{IPS}(J/\psi)$	> 3.5	> 2.5	
$IPS(B_c^+)$	< 3.0	< 4.0	

Selection results

p_{T} intervals of B_{c}^{+}	5-12 GeV/c	\geq 12 GeV/c
Total efficiency ε_{tot} Signal yield B/S @ 90% CL	$\begin{array}{c}(0.337\pm 0.010)\ \%\\ \sim 100\\ [3.04,\ 5.82]\end{array}$	$egin{array}{l} (0.856 \pm 0.016) \ \% \ \sim 260 \ [0.55, 1.19] \end{array}$

Background t^* distribution

Obtained from the inclusive *J*/*ψ* sample, as the first step.
PDF

$$\begin{split} &f_{bkg}^{t^*}(t^*_i, \sigma_{t^*_i} | f_{prompt}, f_+, f_{++}, \lambda_-, \lambda_+, \lambda_{++}, S_{t^*}) \\ &= f_{prompt} G(t^*_i, \sigma_{t^*_i} | S_{t^*}) + (1 - f_{prompt}) \big[(1 - f_+ - f_{++}) \cdot E(t^*_i | \lambda_-) \otimes G(t^*_i | \sigma_{t^*_i}, S_{t^*}) \\ &+ f_+ \cdot E(t^*_i | \lambda_+) \otimes G(t^*_i | \sigma_{t^*_i}, S_{t^*}) + f_{++} \cdot E(t^*_i | \lambda_{++}) \otimes G(t^*_i | \sigma_{t^*_i}, S_{t^*}) \big] \end{split}$$

