Charm Physics at BES and Impact on CKM elements

V. Niess, on behalf of S. Descotes-Genon

FCPPL 09 Workshop, Wuhan

FCPPL collaboration Sébastien Descotes-Genon (LPT Orsay) Jérôme Charles (CPT Marseille) Haibo Li (IHEP Beijing) Xian Wei Kang (IHEP Beijing)

The Game

Observation

Observables smeared by measurement errors

Frequentism

<u>2 types of measurement errors</u> as regards to the repetition of the observation in *identical* conditions:

-Systematics: bias in the repetition of the measurements as regard to the observable value

-Statistical: fluctuations inherent to the measurement that can be described by a statistical distribution (mostly Gaussian, cf. central limit theorem)

⇒ Use Frequentist hypothesis test statistical tools

<u>The key ingredient</u>: a test statistic (typically, χ^2 type) as a decision rule for a hypothesis test of the chosen theory

<u>The tools</u>: *p*-value of the test, either by assuming an asymptotical χ^2 (ndof) distribution or by Monte-Carlo

Illustrated Frequentism

Systematics & RFit

 $\Delta / \sigma = 1$

Systematics = nuisance parameters in a bounded range $\pm \Delta$ 0.8 \Rightarrow Range of width 2 Δ of confident ^{0.61}ت enough values for the systematics 0.4 and minimise χ^2 0.2 Over this range, the resulting test 0 significance is evenly flat. _4 Different from statistical modeling 1 of systematics (e.g., uniform pdf) 0.8 ^{ا 6.6} ت Simple example: 0.4 $x = \mu + \sigma N[0,1] + \Delta_x$ 0.2

stat. error

systematics

observation

parameter

 $\Delta / \sigma = 2$

Gaussian pdf + Uniform pdf for systematic
 Gaussian pdf + systematic as a Range parameter

Weak Interactions and the CKM Matrix

3 generations \Rightarrow parameterisation with 3 Euler angles θ_{ij} + 1 complex phase δ allowed (CP violation) Hierarchy: transitions between generations are disfavoured \Rightarrow Wolfenstein parameterisation of V_{CKM}

$$V_{CKM} = \begin{bmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix} + O(\lambda^4) \begin{bmatrix} A \\ \lambda \\ \overline{\rho} \\ \overline{\eta} \end{bmatrix}$$

$$\begin{cases} A = 0.8117 [+0.0096 - 0.0236] \\ \lambda = \sin(\theta_{12}) = 0.2252 \pm 0.0008 \\ \overline{\rho} = 0.145 [+0.024 - 0.034] \quad \text{(1}\sigma \text{ CL}) \\ \overline{\eta} = 0.339 [+0.019 - 0.015] \\ \text{(from CKMfitter Summer 08)} \end{cases}$$

CKM Unitarity Triangles

From V_{CKM} many unitarity relations, related to 4 Mesons (top excluded) \Rightarrow graphically represented as triangles in complex plan ($\vec{a} + \vec{b} = -\vec{c}$)

Indirect Constraints on D-UT

In the SM kaon and B processes constrain strongly D-UT through the CKM parameters:

- • $|V_{us}|$ constraints (in a first approximation) $\lambda \sim |V_{cd}| = \int |V_{cd}| = \int$
- •B \rightarrow DK constraints γ and thus α_D and β_D

 $[\]begin{cases} |V_{cd}| = 0.22508 \pm 0.00082 \\ \alpha_D = -70^{\circ} \ [+29 - 27] \end{cases}$

Direct Constraints on V_{cd} and V_{cs}

Former direct determinations:

• $ V_{cd} $: DIS of vs on nucleons (hard to improve)	$\left V_{cd}\right = 0.2308 \pm 0.011$	(5%)
• V _{cs} : charm tagged W decays	$\left V_{cs} \right = 0.97 \pm 0.09 \pm 0.07$	(12%)

For comparison $|V_{us}|$ from KI3 is measured at 0.5% accuracy

New kid on the block:

Extract $|V_{cd}|$ and $|V_{cs}|$ from:

- \bullet Semileptonic decays of D and $\rm D_s$ mesons
- Lattice QCD (LQCD) for the strong interaction part (vector form factors f_+ dominant)

 $V_{cd} = 0.222 \pm 0.008 \text{ (stat)} \pm 0.003 \text{ (syst)} \pm 0.023 \text{ (latt)} (3.8\% \text{ exp} + 10\% \text{ th})$ $V_{cs} = 1.018 \pm 0.010 \text{ (stat)} \pm 0.008 \text{ (syst)} \pm 0.106 \text{ (latt)} (1.3\% \text{ exp} + 10\% \text{ th})$

V_{cd} not competitive yet for CLEO-c : main improvement should come from lattice

with CLEO C results on D->pi e nu and D->K e nu (Shipsey, Aspen 08) and with FNAL-MILC-HPQCD lattice values for f_+(0)

Direct vs Indirect measurements

CLEO-c competitive for V_{cs} (with a central value above unitarity bound), but not for $V_{cd}\ldots$ yet, mainly due to lattice

Direct vs Indirect measurements (2012)

For **BES 2012**, error on $V_{cd} f_{+}(0)$ and $V_{cs} f_{+}(0)$ below 1%, lattice error around 5%

- Competitive determination of V_{cd} and V_{cs}
- Potential to find defaults in unitarity, signs of New Physics

Direct Constraints on V_{cd} and V_{cs} (2)

•CLEO C (arXiv:0806.2112) for $D \rightarrow \mu v$,

- World Averaging CLEO, BaBar and Belle (arXiv:0901.1147 & 0901.1216) for $D_s \rightarrow I v$
- our own LQCD average (<u>http://ckmfitter.in2p3.fr</u>: mainly fully unquenched as HPQCD07, FNAL-MILC07, but also two-flavour simulations).

The Story With D_s Decay Constant

But ... discrepancy between experiment and theory for D_s to I v branching ratios

With recent LQCD updates the theoretical predictions for D and D_s purely leptonic branching ratios are more accurate than their direct measurements, and not in very good agreement

Little change expected from LQCD (f_{Ds} well controlled on the lattice) More accurate measurements required! \Rightarrow BESIII could achieve 0.7% accuracy on D_s leptonic branching ratios

CP violation in Psi $\rightarrow 2D \rightarrow 4V$

<u>CP violation in D decays</u>:

Challenging in Standard Model but clean probe of new Physics
BEPC will provide intricate DD pairs
If CP studied at BESIII à la BaBar/Belle, price for flavour tagging

 $\begin{array}{ll} & \mbox{Alternative proposal: } {\sf Psi} \rightarrow 2{\sf D} \rightarrow 4{\sf V} & \mbox{Haibo Li (IHEP)} \\ & \mbox{Jérôme Charles (CPT Marseille)} \\ & \mbox{Sébastien Descotes-Genon (LPT Orsay)} \\ \hline \bullet D\overline{D} & \mbox{produced in definite quantum state (L=1)} \\ & e^+e^- \rightarrow \Psi \rightarrow D^0\bar{D}^0 \rightarrow f_af_b \\ \hline \bullet & \mbox{Observation of final states are CP eigenstates with same CP parity} \\ & \mbox{CP}|\Psi\rangle = |\Psi\rangle & \mbox{CP}|f_af_b\rangle = \eta_a\eta_b(-1)^\ell |f_af_b\rangle = -|f_af_b\rangle \\ & \mbox{... means observation of CP violation !} \\ \hline \bullet & \mbox{D} \rightarrow 2{\sf V} \text{ high branching ratio (a few % for K*\rho)} \end{array}$

CP violation in Psi \rightarrow 2D \rightarrow 4V (2)

Angular analysis for each DQuantum correlation of the pair

⇒CP-violating observables from differential BR related to particular combination of helicities or partial waves

(eg: S wave + S wave, P wave + P wave)

$$d\Gamma = dLIPS \times \frac{81}{2(4\pi)^6} |H^{\Psi V_1 V_2 V_3 V_4}|^2 \qquad ($$

$$\left| \left[\cos \theta_{V_1} \cos \theta_{V_2} A_0^{D_1 \to V_1 V_2} - \frac{1}{\sqrt{2}} \sin \theta_{V_1} \sin \theta_{V_2} \cos \Phi A_{\parallel}^{D_1 \to V_1 V_2} - \frac{i}{\sqrt{2}} \sin \theta_{V_1} \sin \theta_{V_2} \sin \Phi A_{\perp}^{D_1 \to V_1 V_2} \right] \right. \\ \left. \left. \left. \left[\cos \theta_{V_3} \cos \theta_{V_4} A_0^{D_2 \to V_3 V_4} - \frac{1}{\sqrt{2}} \sin \theta_{V_3} \sin \theta_{V_4} \cos \Psi A_{\parallel}^{D_2 \to V_3 V_4} - \frac{i}{\sqrt{2}} \sin \theta_{V_3} \sin \theta_{V_4} \sin \Psi A_{\perp}^{D_2 \to V_3 V_4} \right] \right] \right] \\ BR, \quad \left[\cos \theta_{V_1} \cos \theta_{V_2} A_0^{D_2 \to V_1 V_2} - \frac{1}{\sqrt{2}} \sin \theta_{V_1} \sin \theta_{V_2} \cos \Phi A_{\parallel}^{D_2 \to V_1 V_2} - \frac{i}{\sqrt{2}} \sin \theta_{V_1} \sin \theta_{V_2} \cos \Phi A_{\parallel}^{D_2 \to V_1 V_2} - \frac{i}{\sqrt{2}} \sin \theta_{V_1} \sin \theta_{V_2} \sin \Phi A_{\perp}^{D_2 \to V_1 V_2} \right] \\ \times \left[\cos \theta_{V_3} \cos \theta_{V_4} A_0^{D_1 \to V_3 V_4} - \frac{1}{\sqrt{2}} \sin \theta_{V_3} \sin \theta_{V_4} \cos \Psi A_{\parallel}^{D_1 \to V_3 V_4} - \frac{i}{\sqrt{2}} \sin \theta_{V_3} \sin \theta_{V_4} \cos \Psi A_{\parallel}^{D_1 \to V_3 V_4} - \frac{i}{\sqrt{2}} \sin \theta_{V_3} \sin \theta_{V_4} \sin \Psi A_{\perp}^{D_1 \to V_3 V_4} \right] \right]$$

$$\begin{array}{c}
\rho^{0}\rho^{0}\\
\bar{K}^{*0}\rho^{0} \rightarrow (K_{S}\pi_{0})(\pi^{+}\pi^{-})\\
\rho^{0}\phi\\
\bar{K}^{*0}\omega \rightarrow (K_{S}\pi^{0})(\pi^{+}\pi^{-}\pi^{0})
\end{array}$$

Most promising modes, but need dedicated study of efficiency at BES (work in progress)

Conclusion and Outlook

•Charm physics provides interesting cross-checks of the KM mechanism of CP violation tested in B and K physics

•Two obvious places :

- •Semi leptonic decays : good agreement,
 - but V_{cd} not competitive yet (room for improvement)
- •Leptonic decays : situation quite unclear for D_s decays disagreement between experiments
- CP violation small in the SM, therefore a good place to search for new physics
 - either in a similar way to Babar and Belle
 - or through quantum correlations in D pairs

Many issues where high statistics needed BES can help solve them and test consistency of KM mechanism with charm