## To search for dark matter through line emission

-- a suggestion for China and France cooperation

**Guoming Chen** 

IHEP, CAS March 23, 2009

2009/3/23

## **PAMELA and ATIC measurements**



2009/3/23



#### Gamma ray spectrum

**Guoming CHEN** 

3

### AMS02 ECAL capability



AMS can measure gamma ray energy from 1GeV to 2TeV with resolution of 2%

2009/3/23

## **Neutralino mass and flux**

#### SUSY Models



2009/3/23

![](_page_5_Picture_0.jpeg)

What kind of detector is need to observe the utmost flux of line emission from neutralino annihilation?

# Fast simulation: put a virtual detector on orbit

![](_page_6_Picture_1.jpeg)

## Suppose the detector is

#### area 1m<sup>2</sup>

- geometry factor 3m<sup>2</sup>sr
- gamma energy measurement 30GeV—4TeV
- energy resolution 2%
- angular resolution 0.5°
- proton rejection 10<sup>-7</sup>
- electron rejection 10<sup>-4</sup>

#### backgrounds

$$\Phi_{hardron}(E) = 1.49 E^{-2.74} \text{ cm}^{-2} \text{ s}^{-2} \text{ sr}^{-1} \text{ GeV}^{-1}$$

$$\Phi_{electron}(E) = 6.9 \times 10^{-2} E^{-3.3} \text{ cm}^{-2} \text{ s}^{-2} \text{ sr}^{-1} \text{ GeV}^{-1}$$

$$\Phi_{extra-y}(E) = 1.38 \times 10^{-6} E^{-2.1} \text{ cm}^{-2} \text{ s}^{-2} \text{ sr}^{-1} \text{ GeV}^{-1}$$

$$\Phi_{galac-y}(E) = N_0(l, b) 10^{-6} E^{-2.7} \text{ cm}^{-2} \text{ s}^{-2} \text{ sr}^{-1} \text{ GeV}^{-1}$$

$$N_0(l, b) = \begin{cases} \frac{1}{\sqrt{1 - (l/35)^2} \sqrt{1 - (b/1.8)^2}} & l > 30\\ \frac{1}{\sqrt{1 - (l/35)^2} \sqrt{1 - (b/(1.1 + |l| 0.022))^2}} & l \le 30 \end{cases}$$

$$\Phi_{2EG_j 1746_2 2852}(E) = 7.6 \times 10^{-11} (E/1047 \text{ MeV})^{-1.7} \text{ cm}^{-2} \text{ s}^{-1} \text{ MeV}^{-1}?$$

#### And signal from neutralino annihilation

2009/3/23

**Guoming CHEN** 

astro-

14v2

h/05107

## One year sensitivity

![](_page_9_Figure_1.jpeg)

2009/3/23

## Detectability vs. energy resolution

![](_page_10_Figure_1.jpeg)

2009/3/23

## Detectability vs. detector area

![](_page_11_Figure_1.jpeg)

2009/3/23

#### Preliminary design (High Energy Gamma Ray detector, HEGARD)

![](_page_12_Figure_1.jpeg)

## **One layer of the ECAL**

![](_page_13_Figure_1.jpeg)

#### One layer = one radiation length, 20 layers in total

#### Weight and Acceptance

| ECAL size<br>m <sup>2</sup> | naked detector<br>kg | support<br>kg | area<br>m <sup>2</sup> | geo. factor<br>m <sup>2</sup> sr |
|-----------------------------|----------------------|---------------|------------------------|----------------------------------|
| 0.71x0.71                   | 854                  | 85            | 0.5                    | 1.5                              |
| 1.00x1.00                   | 1707                 | 154           | 1                      | 3                                |
| 1.40x1.40                   | 3414                 | 276           | 2                      | 6                                |
| 1.73x1.73                   | 5121                 | 393           | 3                      | 9                                |

#### **1**m<sup>2</sup> scenario meets the minimum requirement

2009/3/23

## MC simulation with G4

![](_page_15_Picture_3.jpeg)

#### **Hits level**

### Energy measurement

From 30GeV to 4TeV, energy resolution better than 2% (leakage corrected)

![](_page_16_Figure_2.jpeg)

![](_page_16_Figure_3.jpeg)

![](_page_16_Figure_4.jpeg)

# Gamma/proton separation from shower shape

TMVA overtraining check for classifier: BDT

![](_page_17_Figure_2.jpeg)

## yeff. vs. p eff.

![](_page_18_Figure_1.jpeg)

## Gamma/proton separation

Shower shape 10<sup>-4</sup>
neutron detection 10<sup>-1</sup>
charge detection 10<sup>-4</sup>

In total : better than 10<sup>-7</sup> meets the requirement

## $\gamma/e$ separation

 Veto efficiency 0.9999, i.e., only 10<sup>-4</sup> electron can contaminate gamma
 The problem is gamma efficiency

## Gamma efficiency reduced by Backlash

#### **Backlash solution**

For the electrons in the backlash: 1)Using plastic rubber to absorb it

For the gammas in backlash: 2) ID with position 3) ID with energy

![](_page_22_Figure_3.jpeg)

## **HEGARD** concept

- size 112x112x40 cm<sup>3</sup>
- weight 2000kg
- power consumption 500W
- time resolution 1ns
- area 1m<sup>2</sup>
- geometry factor 3m<sup>2</sup>sr
- gamma energy measurement 30GeV—4TeV
- energy resolution 2%
- angular resolution 0.5°
- proton rejection 10<sup>-7</sup>
- electron rejection 10<sup>-4</sup>

## Conclusion

The preliminary designed detector can meet the minimum requirement to observe the line emission from neutralino annihilation. But the design is open, you are welcome for cooperation!

## backup

![](_page_26_Figure_0.jpeg)