

Progress and prospects of $ttH/WH,H \rightarrow WW$

Huaqiao ZHANG (CPPM)

On behavior of CPPM/IHEP

ttH/WH, H→WW CSC(CERN-OPEN-2008-020) contributors Y. Bai, S. Jin, F. Lu, E. Monnier, L.Y. Shan, H. Zhang (editor) And more generally all members of CPPM and IHEP

Motivation

- ttH,H→WW 2/3 lepton final states analysis
- $WH, H \rightarrow WW$ 3 lepton final state analysis
- ttH/WH,H→WW Strategies for real data
- Summary and prospects

SM Higgs searching in experiments

- Higgs particles is the only particle that predicted in SM but not found yet experimentally
- LEP direct search exclude light Higgs below 114 GeV
- With recent Tevatron results, SM electroweak fit prefers Higgs less than 190 GeV (including LEP) and [160,170] GeV without.
- Higgs Coupling to top quarks and W boson are important properties of Higgs

The SM Higgs at the LHC

Associate production:

- Coupling measurement for Higgs mass [120, 200] GeV => SM Higgs or not
- Important especially for Yukawa coupling gt.
- Challenge due to its small x-section

Decay modes:

- For $m_H > 135 \text{ GeV/c}^2 H \rightarrow WW^{(*)}$ dominates (BR : 0.91 @ 160 GeV/c²)

Difficult for this mass region: we need to associate more than one channel 2009/3/22 Huagiao ZHANG(CPPM)

The LHC and ATLAS

- LHC:
 - Proton-Proton collisions @ 14 TeV
 - First run @ 10 TeV expected fall 2009
 - Luminosity:
 - Low luminosity regime ~10³²cm⁻²s⁻¹
 - ~ 200 pb⁻¹ between 2009 and 2010

- ATLAS:
 - General purpose experiments
 - Classic detectors composed mainly by 3 sub-systems
 - Inner tracker
 - Calorimeter system
 - Muon spectrometer
 - Very good Trigger/DAQ System
 - Good e/g/m/tau/missEt/b-jets identification

ATLAS detector

ttH,H→WW Signatures

- ttH→2b4j2l2V₁
 - →6jets + 2samecharge lep. + MissEt
- Possible BKGs:
 - tt(11), tt(21), ttZ, ttW, tttt, ttWW, ttbb, W+jets, WZ+jets...
- ttH→2b2j3l3V₁
 - →4jets + 3leptons + MissEt
- Possible BKGs:
 - **tt(2l)**,**ttZ**,**ttW**,**tttt**,**ttWW**,**ttbb**
- tau not considered in signal
- Complex final states=>Number counting experiment
 - At least 2 neutrinos
 - Multi jets + Multi leptons + MissEt
- Background control important
- Main BKG tt suppressed by lepton isolation=>Lepton isolation is crucial
- ttZ suppressed by Z mass veto
- QCD BKGs under control

2009/3/22

ttH,H→WW analysis @ 14 TeV

One high Pt Isolated lepton trigger		σ[fb]
 offline significance impact < 1% 	ttH2I	10.49
Phys. Obj. kinematic region:	ttH3I	6.91
- n <2.5; Pt>15.GeV	ttbar	833000
Electron identificatio Eff:70.5%	ttW+nj	582
- Matching to ID track	ttZ	1090
Muon identification: Eff:92.7%	ttbb	9100
 Seeded in Muon Spectrometer Combined with TD track 	††††	2.68
Jet identification: cone based, size	0.4	

• Lepton Isolation:

.

٠

- Electron: - Muon: Calorimeter Isolation_

n + Tracker Isolation

+ Cone Isolation_

- Number of leptons >= 2/3, Number of jets >= 6/4
- Final tighten cut:
 - Zveto, MuonPt>20GeV, Number of lepton==2/3, sameCharged/null
- Possible Improvements using MV technic
 - Mass Constrained fit (good pre. Results, further study needed)
 - Isolation likelihood (good results shown)

	σ[<mark>fb</mark>]	2L sel.	3L sel.
ttH2I	10.49	1.85±0.03	-
ttH3I	6.91	0.24±0.01	0.82±0.02
ttbar	833000	7.4±1.1	2.06±2.06
ttW+nj	582	1.7±0.06	0.47±0.04
ttZ	1090	1.14±0.07	0.86±0.06
ttbb	9100	0.55±0.18	-
††††	2.68	0.07±0.01	-

ttH,H→WW Background rejection

Experimental uncertainties @ 14 TeV 30fb⁻¹

- The expected cross section for signal and backgrounds are:
 - 1.9:10 (fb)for ttH(2L) and 0.8:3.4 (fb)for ttH(3L)
- Several experimental systematic uncertainties are considered, based on current understanding of detector
- The main contribution of uncertainties are from JES

Source of the uncertainty	7	<i>ttH</i> (2L)		<i>ttH</i> (3L)	
		Δ signal (%)	Δ background (%)	Δ signal (%)	Δ background (%)
Luminosity	3	3	3	3	3
Electron ID efficiency	0.2	0.2	0.2	0.3	0.3
Muon ID efficiency	1	1.0	1.0	1.5	1.5
Electron $E_{\rm T}$ scale	0.5	0.1	0.1	0.2	0.3
Muon E _T scale	1	0.5	0.2	0.7	1.0
Electron $E_{\rm T}$ resolution		0.1	0.1	0.1	0.2
Muon p_T resolution		0.6	2.2	0.3	0.9
Jet energy scale	7	1.2	4.9	2.7	10
Jet energy resolution		1.0	1.4	1.9	5.7
Electron isolation efficiency	1	1	1	1.5	1.5
Muon isolation efficiency	1	1	1	1.5	1.5
Experimental uncertainty		±3.9	±6.6	±5.2	±12.3

Using early data to understand these systematics

WH, $H\rightarrow$ WW Signature and selection

- Higgs physics
 - Supplement to the Discovery
 - Necessary confirmation for the property
 - Couplings to gauge boson
- WH,H→WW^(*) physics analyses
 - One High Pt isolated lepton trigger
 - Two and three lepton final states (2L/3L)
 - WH→WWW^(*)→lv lv jj (under investigate, not in this report)
 - WH \rightarrow WWW^(*) \rightarrow Iv Iv Iv
 - Full analysis over WH against ttbar, WZ, ttW, ZZ
 - Number counting experiments

- Number of jets and leptons
- Zveto
- Missing Transverse Energy
- Lepton isolation
 - Calorimeter isolation
 - Tracker isolation
 - Cone isolation
 - Impact parameter
- B-jet/jet veto
- W mass range
- Higgs-Spin cut

WH,H→WW Background rejection

pT-distribution for the leading
 leptons in the WH(3L) signal, ttbar,
 WZ, ttW and W+jet production

- Zveto to suppress the contribution from BKG have a Z
 - invariant mass of all the lepton pairs

- B-jet/jet veto
 - sum of the pT of all jets
 - No B-tagged jets

Experimental uncertainties @ 14 TeV 30fb⁻¹

- The expected cross section for signal and backgrounds are:
 - 0.3:0.4 (fb)
- Several experimental systematic uncertainties are considered, based on current understanding of detector
- The main contribution of uncertainties are from JES

fb	WH3L	WZ	++	ZZ	ttW	wbb	W+jet
σ	3.42	44760	833000	14750	582	2.1*10 ⁵	1. 9* 10 ⁸
3L selection	0.31	0.10	0.34	0.005	0.003	0	0

Source of the uncerta	ainty	WH 3L selection				
		$\Delta WH(3L)(\%)$	ΔWZ (%)	$\Delta t\bar{t}$ (%)	$\Delta ZZ (\%)$	$\Delta t \overline{t} W$ (%)
Luminosity	3	3	3	3	3	3
Electron ID efficiency	0.2	0.3	0.3	0.2	0.9	1.1
Muon ID efficiency	1	1.5	1.7	1.9	1.0	1.7
Electron energy scale	0.5	0.06	0.06	0.2	0.02	0.07
Muon energy scale	1	0.2	0.1	1.0	0.08	0.7
Muon p_T resolution		0.1	0.03	0.2	0.02	0.4
Jet energy scale	7	2.5	2.6	17.4	2.3	13.6
Jet energy resolution		0.005	0.03	1.9	0.5	0.7
<i>b</i> -tag eff. / light jet rej.	5/32	1.0	1.0	2.7	0.8	3.2
Experimental uncertaint	ty	±4.3 ±14.5				

ttH/WH,H→WW^(*) strategy for real data

- 200bp⁻¹ data @ 10 TeV (preparation and BKG estimation)
 - Not possible for signal identification (too small X-section)
 - 2.2 signal expected to be produced(0.4 to be observed) for ttH,H→WW 2lepton channel
 - BUT understanding detector performances and Background level is crucial with early data:
 - Performance involved:
 - trigger; electron, Muon, Jets, BJets, Missing Et
 - Detects involved:
 - ID, Calo, Muon
 - Several Data driven method to estimate backgrounds level are under investigation, tool need to be prepared and tested with first data (see backup)
 - Limit on $\sigma_{ttH/WH}$ * Br_H \rightarrow WW can be given for given higgs masses
 - However similar signature of SUSY same charge dilepton channel searches share the same BKGs of ttH2L (CPPM/IHEP) accessible with early data
- ~30fb-1 data @ 14TeV is more feasible for ttH/WH,H→WW analysis, while many of the performance should be consistent with 10 TeV → study the first data for these channels crucial

Summary and prospects

- ttH,H→WW ^(*) and WH,H→WW ^(*) studies done with ATLAS real detector geometry full simulation, under IHEP(China) and CPPM(France) cooperation, each channel is in a co-tutor Ph.D thesis and in the Higgs CSC(HG6) publication
- Contribute to coupling measurement
 - ttH,H→WW ^(*) (gt)
 - WH,H→WW ^(*)(gW)
- Number counting experiments => BKG control is crucial
 - Mass peak reconstruction:
 - Hopeless in ttH, $H \rightarrow WW^{(*)}$, not yet tried in $WH, H \rightarrow WW^{(*)}$
 - Background uncertainties using early data
 - JES dominate the uncertainties of BKGs
 - BKG normalization/estimation important
 - Data driven method needed
 - More advanced methods during 30fb⁻¹ data gathering
 - Statistical part of systematic uncertainties reduced with 30fb⁻¹ data
- Improvement of these analysis ongoing

• China France cooperation fruitful to get best results of first data 2009/3/22 Huagiao ZHANG(CPPM) 14

Bak up: Main Issues for $ttH/WH, H \rightarrow WW^{(*)}$ Channel

- Higgs reconstruction difficult
 - At least two neutrinos, one from Higgs W decay, one from top W decay
 - With a virtual W, which could decay leptonic or hadronic
 - Large combinatory in complex final states
- Lepton isolation is crucial in background suppression
 - Several isolation methods are tried
 - Could improve by Multivariable methods, with better understanding of real data
- Big uncertainty for the backgrounds cross section normalization
 - Theoretical uncertainties could improve with understanding of real data
 - Need data driven methods to estimate BKG
- Data Driven methods to estimate BKG level are under development

ttH/WH,H \rightarrow WW analysis data driven strategy (1)

ttH-WW* BKG Fraction

	S/B	ttbar	ttW	ttZ	Sum.
ttH2L	0.16	62%	17%	13%	92%
ttH3L	0.22	55%	15%	29%	99%

The X and Y variable should have large discrepancy

- ideal case, they aren't correlate
- different bg sources are estimated separately if their shapes differ in these variables

A/B = D/C , D=A*C/B (A+B)/B = (C+D)/C, (C+D) = (A+B)*C/B

In real data A,B,C are obtained from controlled ttbar pure sample;, ttH-WW selected D includes S+bgs, then bg from ttbar can be calculated from A,B,C numbers.

First try using N_lep and N_lightjets to check their correlation, more variables investigation needed Similar strategies for ttW, ttZ bg estimation

16

$ttH/WH,H\rightarrow WW$ analysis data driven strategy (2)

- Category BKG into several sources
 - Charge Flip (ttH,H→WW 2L only)
 - Z+x and W(→I v)+x, where x can be top/W/Z, who can have a isolated lepton in the final states
 - Non-isolated/Fake lepton
 - ...
- Lepton charge flip BKG estimation
 - Using $Z \rightarrow ee/uu$ control sample to estimate the charge flip rates
 - Using charge discrepancy of Muon system and ID system control sample (ttbar, Z->uu...), to estimate ID charge flip rates (suppose Muon system charge flip rates lower than ID)
- Z+x and W+x background estimation ?
 - Back to strategy 1?
 - Ideas are extremely welcome (zhang@cppm.in2p3.fr)

$ttH/WH,H\rightarrow WW$ analysis data driven strategy (3)

Non isolated lepton BKG estimation

- $\sigma_{x-channel} / (Eff_{lep1_iso} * Eff_{lep1_iso})$ should be const if x-channel do have 2 isolated lepton and Efflep1_iso and Efflep2_iso do present the lepton isolation efficiency, while it will change if one of the lepton is not isolated
- The data is a mixture of channel which have 2 isolated lepton and at least 1 non-isolated lepton, a asymptotic fit to get the const term and the changing term, and the changing term curve represent the non isolated lepton contributions
- Similar method has been used in H→WW analysis to estimate fake BKG from W+jets, the results seems promising

- Using a lepton isolation variable (EtCone,LLH...), to estimate prompt (nonisolation) lepton background instead of using Lepton ID
- Using ttbar control sample to determine Lepton Isolation efficiency vs criteria curve (tried in CSC 30fb-1 MC, not in the pub note yet)
- Tool preparation and initial studies needed...