
BaBar results on $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$ and the muon g-2 prediction

LiangLiang WANG

(Joint Ph.D Thesis)

Michel DAVIER (LAL-Orsay) ChangZheng YUAN (IHEP-Beijing)

- physics goals
- analysis steps
- $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$
- $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$
- discussion

Hadronic vacuum polarization and muon g-2

 $D_{a} = (0)(a) (a) (a) (a) (a) (a)^{2}$

Contributions to the Standard Model (SM) Prediction:

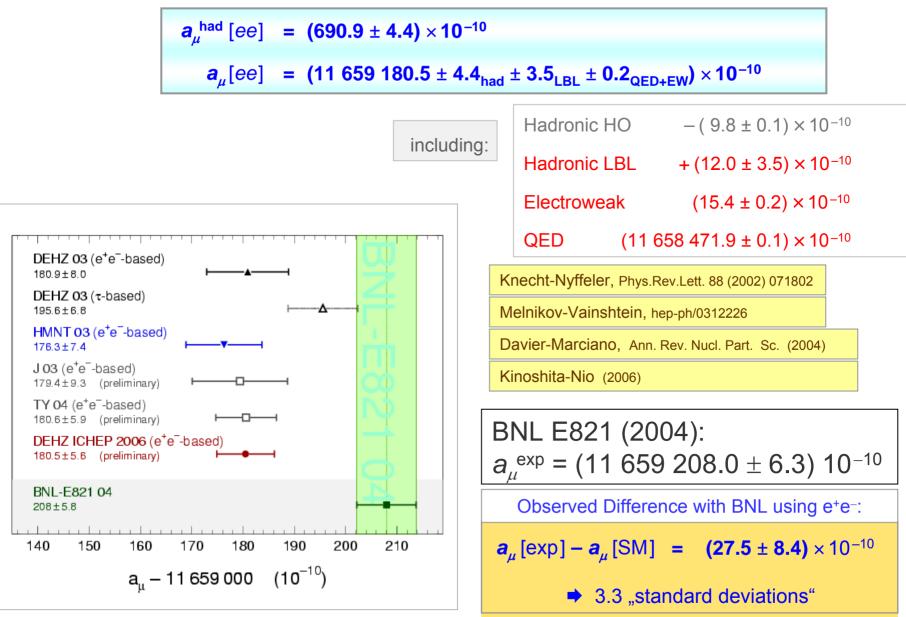
$$\boldsymbol{a}_{\mu} \equiv \left(\frac{g-2}{2}\right)_{\mu} = \left(\boldsymbol{a}_{\mu}^{\mathsf{QED}}\right) + \left(\boldsymbol{a}_{\mu}^{\mathsf{had}}\right) + \left(\boldsymbol{a}_{\mu}^{\mathsf{weak}}\right)$$

$$12\pi \operatorname{Im}\Pi_{\gamma}(s) = \frac{\sigma^{0}[e^{+}e^{-} \rightarrow \operatorname{hadrons}(\gamma)]}{\sigma_{pr}} \equiv R(s)$$

$$\operatorname{Im}[\swarrow_{\mu}(s) = \frac{\sigma^{0}[e^{+}e^{-} \rightarrow \operatorname{hadrons}(\gamma)]}{\sigma_{pr}} \equiv R(s)$$

$$\operatorname{Im}[\swarrow_{\mu}(s) = \frac{\sigma^{0}[e^{+}e^{-} \rightarrow \operatorname{hadrons}(\gamma)]}{\sigma_{pr}} = R(s)$$

$$\operatorname{Im}[\swarrow_{\mu}(s) = \frac{\sigma^{0}[e^{+}e^{-} \rightarrow \operatorname{hadrons}(\gamma)]}{\sigma_{pr}} = R(s)$$

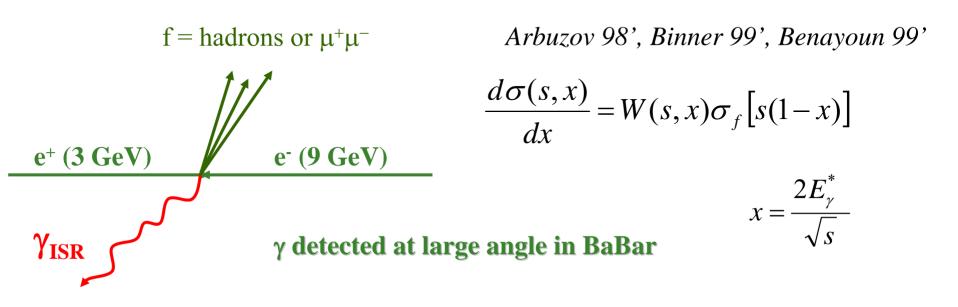

$$\operatorname{Im}[\land_{\mu}(s) = \frac{\sigma^{0}[e^{+}e^{-} \rightarrow \operatorname{Im}(s)]}{\sigma_{pr}} = R(s)$$

$$\operatorname{Im}[\land_{\mu}(s) = \frac{\sigma^{0}[e^{+}e^{-} \rightarrow \operatorname{Im}(s)]}{\sigma_{pr}} = R(s)$$

$$\operatorname{Im}[\land_{\mu}(s) = \frac{\sigma^{0}[e^{+}e^{-} \rightarrow \operatorname{Im}(s)]}{\sigma_{pr}} = R(s)$$

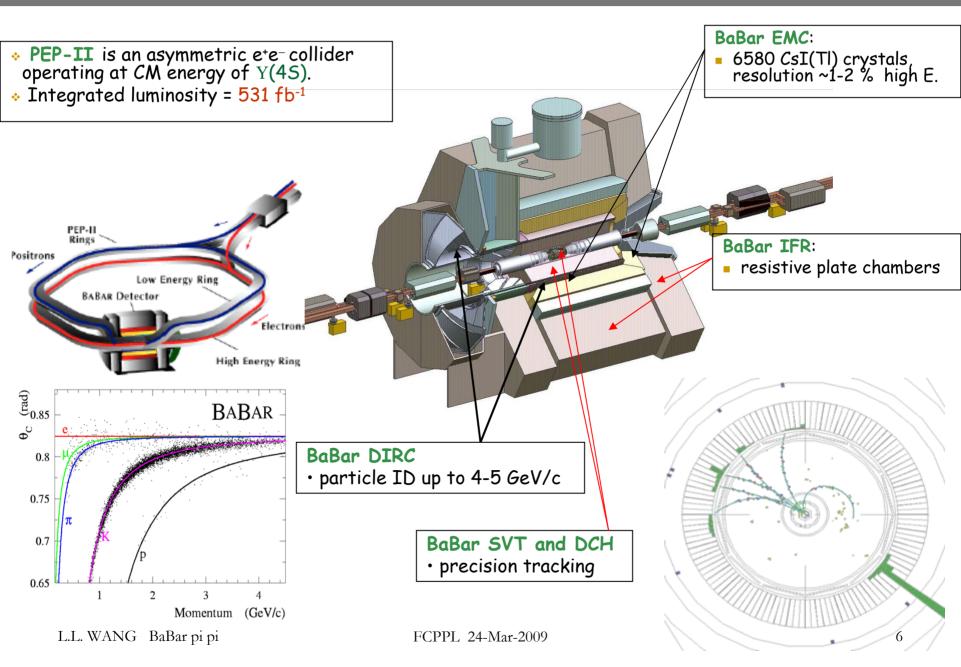
$$\operatorname{Im}[\circ_{\mu}(s) = \frac{\sigma^{$$

Situation since 2006

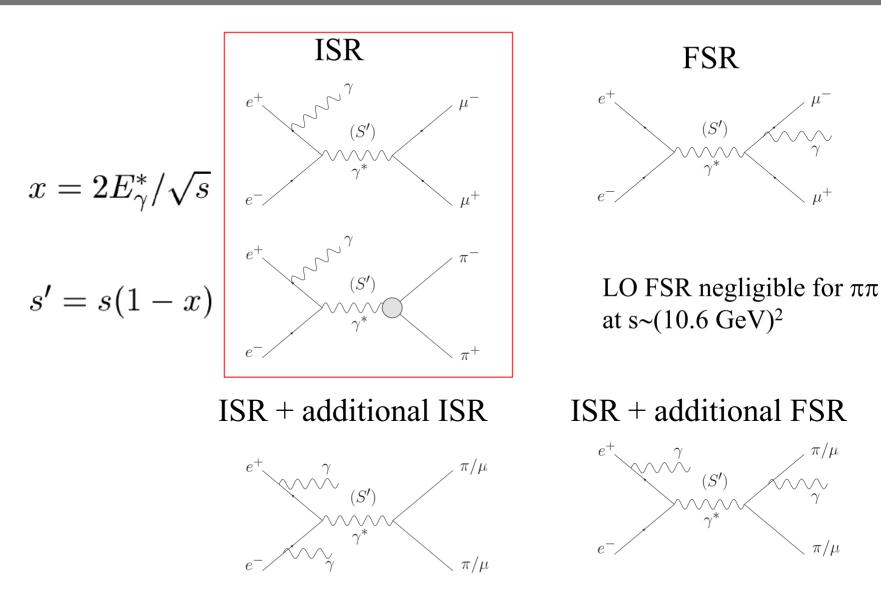

Goals of the analysis

- Measure $R_{\pi\pi} = \sigma_{\pi\pi} / \sigma_{pt}$ (also R_{KK}) with high accuracy for vacuum polarization calculations, using the ISR method
- $\pi\pi$ channel contributes 73% of a_{μ}^{had}
- Dominant uncertainty also from $\pi\pi$
- Also important to increase precision on $\alpha(M_Z^2)$ (EW tests, ILC)
- Present systematic precision of e⁺e⁻ experiments CMD-2 0.8% SND 1.5% in agreement KLOE (ISR from 1.02 GeV) 2005 1.3% some deviation in shape 2008 0.8% deviation smaller
- Compare to spectral functions from τ decays discrepancy τ/e^+e^- evaluations $(3.0 \pm 1.1)\%$

 \Rightarrow aim for a measurement with <1% accuracy


great interest to clarify the situation as magnitude of possible discrepancy with SM is of the order of SUSY contributions with masses of a few 100 GeV

ISR method at BaBar : $e+e- \rightarrow \gamma f$



Big advantage of ISR: all mass spectrum covered at once, from threshold to 4-5 GeV (at BaBar), with same detector and analysis

BaBar at PEP II

The relevant processes

The measurement and analysis steps

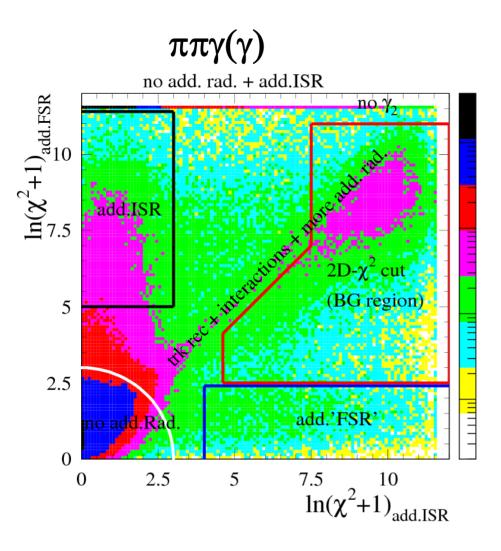
use 230.8 fb⁻¹ (U(4S) on-peak & off peak) data

- Triggers (L1 hardware, L3 software), background-filter
- ISR photon at large angle in EMC (CM energy >3 GeV)
- 1 (for efficiency) or 2 (for physics) tracks of good quality (P>1 GeV)
- identification of the charged particles
- separate $\pi\pi/KK/\mu\mu$ event samples
- kinematic fit (not using ISR photon energy) including 1 additional photon
- obtain all efficiencies (trigger, filter, tracking, ID, fit) from same data
- \bullet Consistency checks for $\mu\mu$ (QED test, ISR luminosity) and $\pi\pi$
- Unfolding of mass spectra
- Unblinding R: measure ratio of $\pi\pi\gamma(\gamma)$ to $\mu\mu\gamma(\gamma)$ cross sections to cancel

ee luminosity additional ISR vacuum polarization ISR photon efficiency

otherwise 2-3% syst error

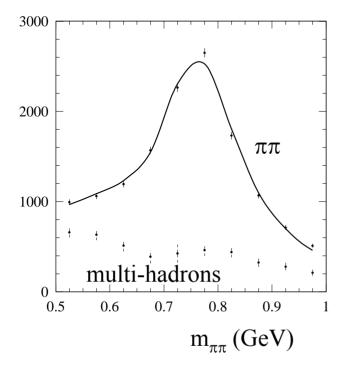
still need to correct for |FSR|² contribution in μμγ(γ) and additional FSR, both calculated in QED, but also checked in data (ISR-FSR interference, additional detected photons)


$$R_{exp}(s) = \frac{\sigma [\pi \pi \gamma (\gamma)](s)}{\sigma [\mu \mu \gamma (\gamma)](s)} = \frac{\sigma^{0} [\pi \pi (\gamma)](s)}{(1 + \delta_{FSR}^{\mu \mu})\sigma^{0} [\mu \mu (\gamma)](s)} = \frac{R(s)}{(1 + \delta_{FSR}^{\mu \mu})(1 + \delta_{addFSR}^{\mu \mu})}$$

• Results on $\pi\pi$ cross section and calculation of dispersion integral for a_{μ}^{had} L.L. WANG BaBar pi pi FCPPL 24-Mar-2009

MC generators

- Acceptance and efficiencies determined initially from simulation, with data/MC corrections applied
- Large simulated samples, typically 10 × data, using AfkQed generator
- AfkQed: lowest-order QED with additional radiation: ISR with structure function method, γ assumed collinear to the beams and with limited energy FSR using PHOTOS similar to EVA (Phokhara ancestor)
- Phokhara 4.0: (almost) exact second-order QED matrix element (2 FSR missing), limited to one extra photon
- Studies comparing Phokhara and AfkQed at 4-vector level with fast simulation


Kinematic fitting

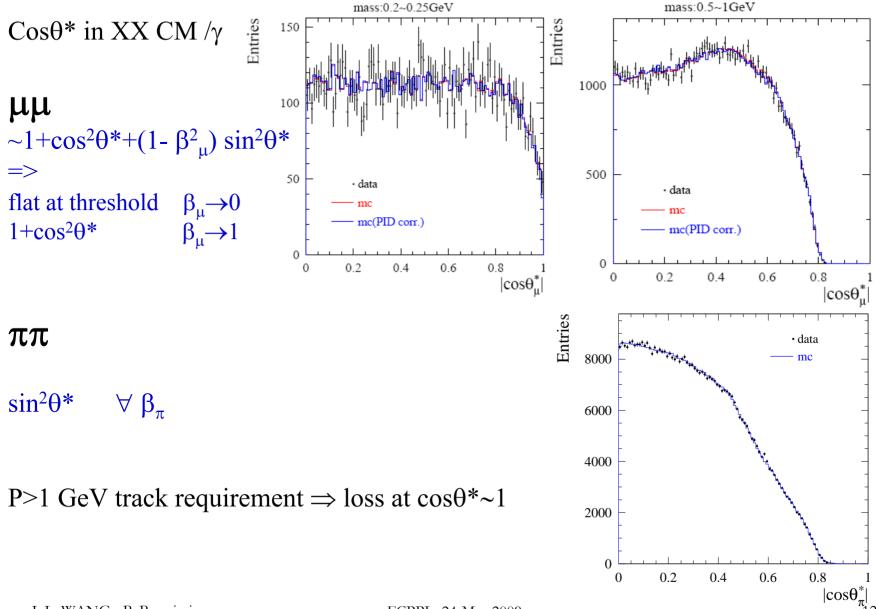
- kinematic fits to X X $\gamma_{ISR} \gamma_{add}$
- ISR photon defined as highest energy
- Add. ISR fit: γ_{add} assumed along beams
- Add. 'FSR' if γ_{add} detected
- Each event recorded on 2D plot
- Typical regions defined
- Loose χ² cut (outside BG region in plot) for μμ and ππ in central ρ region
- Tight χ² cut (ln(χ²+1)<3) for ππ in ρ tail region

Backgrounds in $\pi\pi\gamma$

- background larger with loose χ^2 cut used in 0.5-1.0 GeV mass range
- q q and multi-hadronic ISR background from MC samples + normalization from data using signals from $\pi^0 \rightarrow \gamma_{ISR} \gamma$ (qq), and ω and ϕ ($\pi \pi \pi^0 \gamma$)
- global test in background-rich region near cut boundary

Fitted BG/predicted = 0.968 ± 0.037

process	0.525 GeV	0.775 Gev	0.975 Gev
$\mu\mu$	2.98 ± 0.16	0.25 ± 0.01	1.95 ± 0.11
KK	0.08 ± 0.01	0.01 ± 0.01	0.08 ± 0.01
$\gamma 2\pi\pi^0$	8.04 ± 0.41	0.39 ± 0.05	0.88 ± 0.19
$q\overline{q}$	1.11 ± 0.17	0.26 ± 0.03	1.81 ± 0.19
$\gamma 2\pi 2\pi^0$	1.29 ± 0.16	0.06 ± 0.01	0.46 ± 0.09
$\gamma 4\pi$	0.20 ± 0.04	0.09 ± 0.01	0.24 ± 0.06
$\gamma p \overline{p}$	0.22 ± 0.02	0.04 ± 0.01	0.52 ± 0.06
$\gamma\eta 2\pi$	0.02 ± 0.01	0.03 ± 0.01	0.09 ± 0.01
$\gamma K_S K_L$	0.18 ± 0.03	0.01 ± 0.01	0.10 ± 0.02
$\gamma 4\pi 2\pi^0$	< 0.01	< 0.01	< 0.01
au au	0.17 ± 0.03	0.04 ± 0.01	0.31 ± 0.05
γee	0.63 ± 0.63	0.03 ± 0.03	0.27 ± 0.27
total	14.88 ± 0.81	1.19 ± 0.07	6.61 ± 0.42


BG fractions in 10⁻³ at $m_{\pi\pi}$ values

0 525 CoV 0 775 CoV 0 075 CoV

L.L. WANG BaBar pi pi

FCPPL 24-Mar-2009

Checking Known Distributions

L.L. WANG BaBar pi pi

FCPPL 24-Mar-2009

12

QED test with $\mu\mu\gamma$ sample

1.1

1.05

0.95

0.9

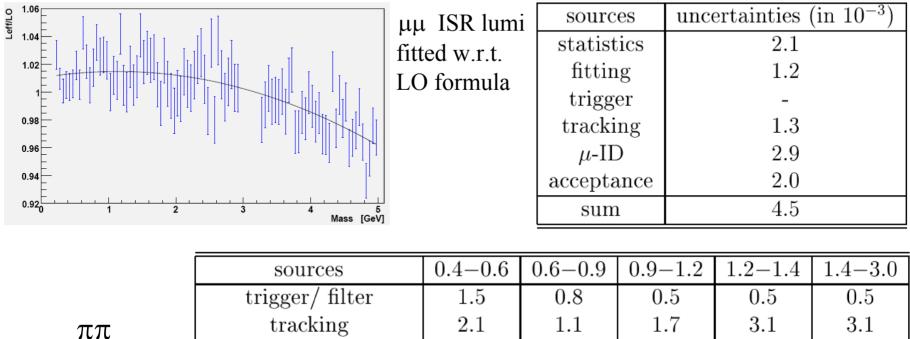
0

1

 J/ψ excluded

2

3


 $M_{\mu\mu}(GeV/c^2)$

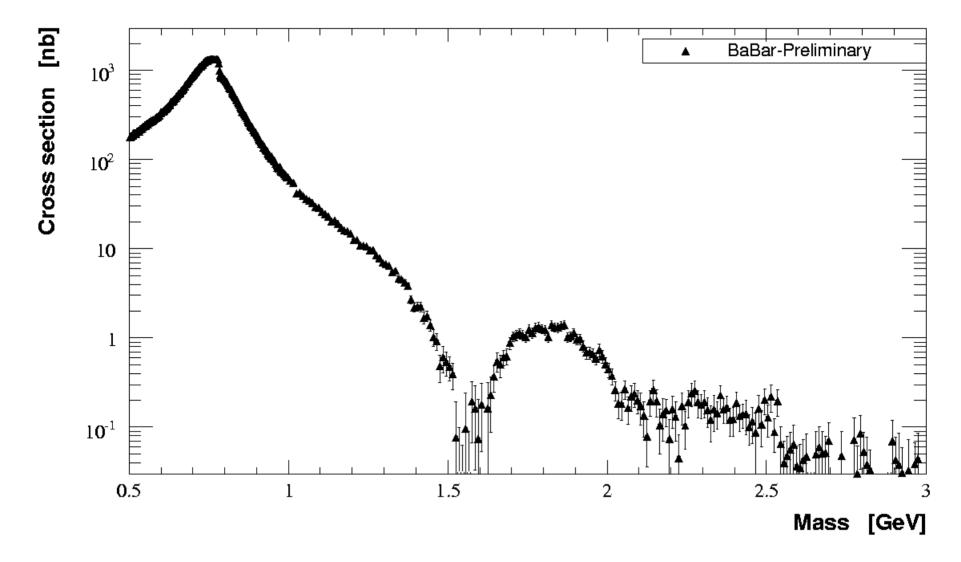
- absolute comparison of µµ mass spectra in data and in simulation
 simulation corrected for data/MC
- simulation corrected for data/MC efficiencies
- AfkQed corrected for incorrect NLO using Phokhara
- results for different running periods consistent: (7.9 ±7.5) 10⁻³
- agreement with QED within 1.2%

$$\frac{\sigma_{\mu\mu\gamma(\gamma)}^{data}}{\sigma_{\mu\mu\gamma(\gamma)}^{NLO\ QED}} = 1 - (5.2 \pm 1.5 \pm 6.9 \pm 9.4) \times 10^{-3} \quad (0.2 - 5.0 \text{ GeV})$$

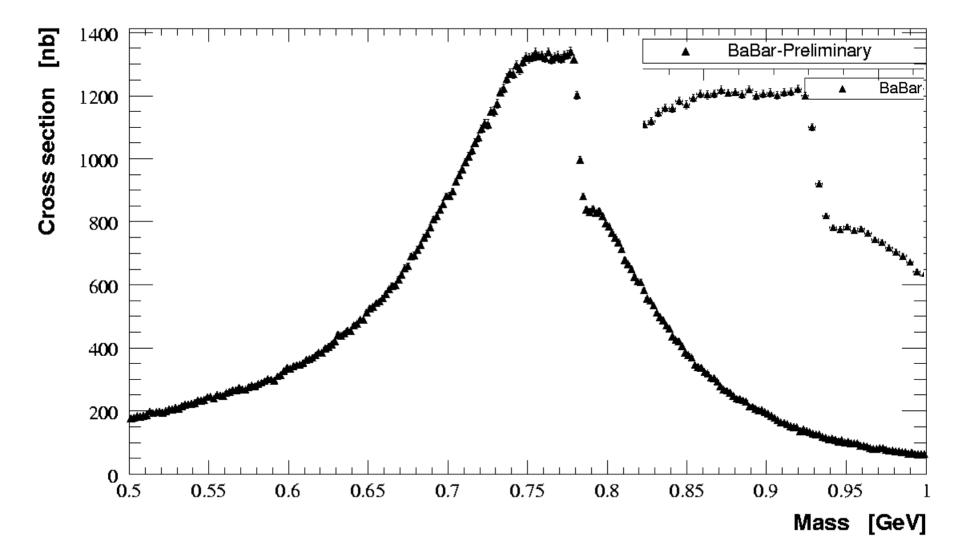
ISR γ efficiency 5.2 syst.
trig/track/PID 4.0

L.L. WANG BaBar pi pi

Systematic Uncertainties

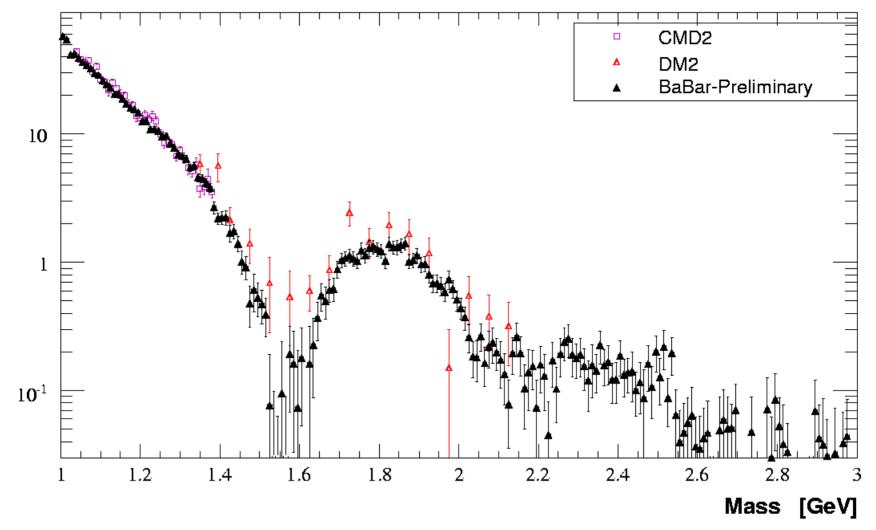


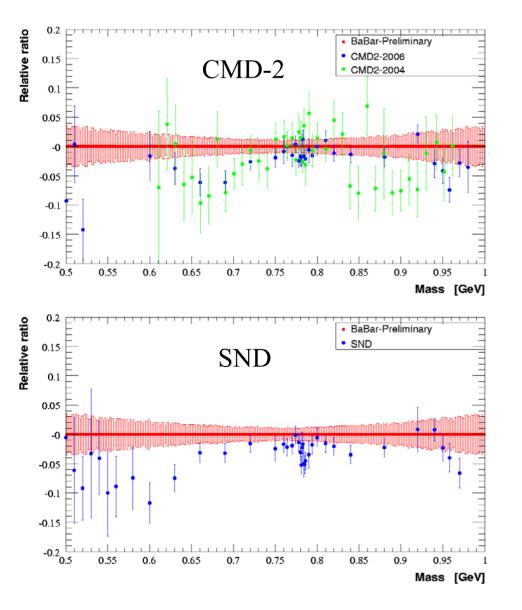
or doking	2.1	1.1	1.1	0.1	0.1
$\pi ext{-ID}$	5.2	2.4	4.2	10.1	10.1
background	5.2	0.4	1.0	7.0	12.0
$\operatorname{acceptance}$	1.0	1.0	1.0	1.0	1.0
kinematic fit (χ^2)	1.8	0.7	1.8	2.8	2.8
correlated $\mu\mu$ ID loss	3.0	1.3	2.0	3.0	10.0
sum $\pi\pi$	7.5	3.3	5.5	13.4	19.1
for $\pi\pi$ cross section	8.7	5.6	(7.1	14.1	19.6


increased to 20. for preliminary results, pending investigations

FCPPL 24-Mar-2009

BaBar results


BaBar results in p region

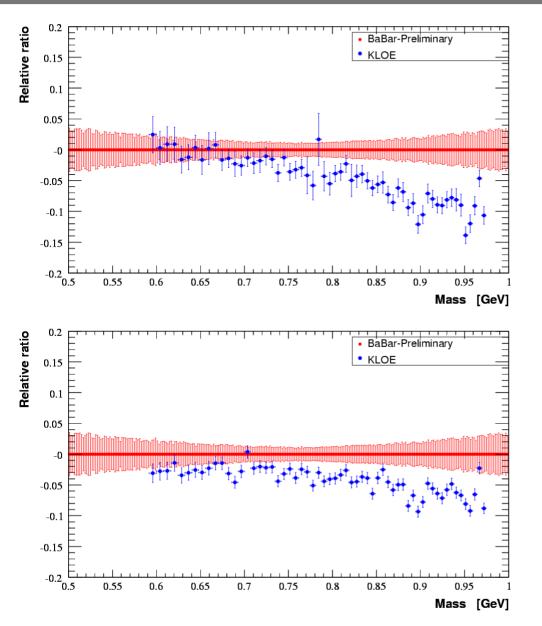

L.L. WANG BaBar pi pi

BaBar vs. other experiments at large mass

- structures observed at large mass: deep dip (1.6 GeV), wider dip (2.2 GeV)
- interferences between higher-mass vector mesons

BaBar vs.CMD-2 and SND (0.5-1.0 GeV)

direct relative comparison of cross sections in the corresponding 2-MeV BaBar bins (interpolation with 2 bins)


deviation from 1 of ratio w.r.t. BaBar

stat + syst errors included

both CMD-2 and SND determine $e^+e^- \rightarrow \pi^+\pi^-$ cross section through the ratio $(\pi\pi+\mu\mu)/ee$ with assumed QED leptonic cross sections

published and revised (rad. corr.)

BaBar vs.KLOE (0.5-1.0 GeV)

ISR method from $\phi(1020)$ only $\pi+\pi-$ detected no $\mu+\mu-$ analysis yet ISR luminosity from Phokhara

KLOE 2005

KLOE Dec. 2008 new data, found bias in cosmic veto for 2005 (superseded) smaller systematic errors

L.L. WANG BaBar pi pi

Computing $a_{\mu}^{\pi\pi}$

$$a^{\pi\pi(\gamma),LO}_{\mu} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} ds \, K(s) \, \sigma^0_{\pi\pi(\gamma)}(s) \; ,$$

where K(s) is the QED kernel,

$$K(s) = x^{2} \left(1 - \frac{x^{2}}{2}\right) + (1 + x)^{2} \left(1 + \frac{1}{x^{2}}\right) \left[\ln(1 + x) - x + \frac{x^{2}}{2}\right] + x^{2} \frac{1 + x}{1 - x} \ln x ,$$

with
$$x = (1 - \beta_{\mu})/(1 + \beta_{\mu})$$
 and $\beta_{\mu} = (1 - 4m_{\mu}^2/s)^{1/2}$.

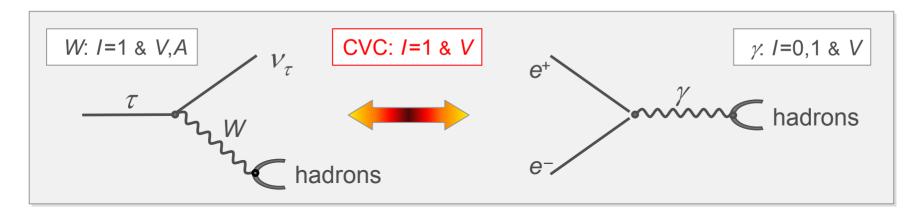
!preliminary! ALEPH-CLEO-OPAL $a_{\mu}^{\pi\pi}$ (×10⁻¹⁰) (DEHZ 2006) (DEHZ 2003) (2008) $m_{\pi\pi} (\text{GeV})$ previous $e^+e^$ present BaBar τ (A-C-O) τ (Belle) 0.28 - 0.5not ready $55.6 \pm 0.8 \pm 0.9$ $56.0 \pm 1.6 \pm 0.3$ $462.5 \pm 0.9 \pm 3.1$ $449.0 \pm 3.0 \pm 0.9$ 0.5 - 1.8 $464.0 \pm 3.2 \pm 2.3$ $519.1 \pm 3.0 \pm 2.5$ $504.6 \pm 3.1 \pm 1.0$ $520.1 \pm 3.6 \pm 2.6$ 0.28 - 1.8

FSR correction was missing in Belle, published value $523.5 \pm 3.0 \pm 2.5$

Direct comparison	0.630-0.958 GeV	BaBar		$369.3 \pm 0.8 \pm 2.2$
		CMD-2	94-95	$362.1 \pm 2.4 \pm 2.2$
		CMD-2	98	$361.5 \pm 1.7 \pm 2.9$
	ECDDI A	SND		$361.0 \pm 1.2 \pm 4.7_{20}$
L.L. WANG BaBar pi pi	FCPPL 24	Mar-2009		20

Conclusions

- BaBar analysis of $\pi\pi$ and $\mu\mu$ ISR processes completed
- Precision goal has been achieved: 0.6% in ρ region (0.6-0.9 GeV)
- \bullet Absolute $\mu\mu$ cross section agrees with NLO QED within 1.2%
- Preliminary results available for $\pi\pi$ in the range 0.5-3 GeV
- Structures observed in pion form factor at large masses
- Comparison with results from earlier experiments some discrepancy with CMD-2 and SND mostly below ρ larger disagreement with KLOE (better agreement with τ results, especially Belle)
- (Contribution to a_{μ} from BaBar agrees better with τ results)
- Deviation between BNL measurement and theory prediction would be reduced using preliminary BaBar $\pi\pi$ data


 $a_{\mu} [\exp] - a_{\mu} [SM] = (27.5 \pm 8.4) \times 10^{-10} \implies (14.0 \pm 8.4) \times 10^{-10}$

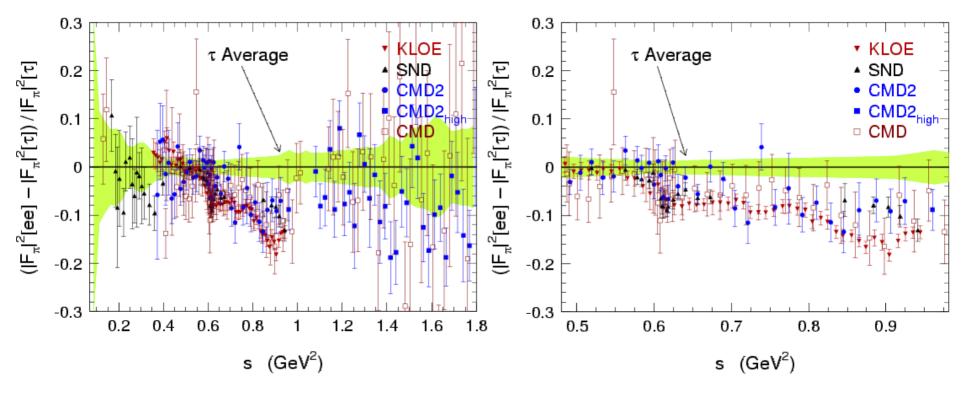
The final results is coming soon!

L.L. WANG BaBar pi pi

Backup Slides

Connecting τ and ee spectral funct. with CVC

Hadronic physics factorizes in Spectral Functions :


CVC: SU(2)
$$\sigma^{(l=1)}\left[e^+e^- \to \pi^+\pi^-\right] = \frac{4\pi\alpha^2}{s}\upsilon\left[\tau^- \to \pi^-\pi^0\upsilon_\tau\right]$$

fundamental ingredient relating long distance (resonances) to short distance description (QCD)

$$\upsilon \begin{bmatrix} \tau^{-} \rightarrow \pi^{-} \pi^{0} v_{\tau} \end{bmatrix} \propto \begin{array}{c} \frac{\mathsf{BR} \begin{bmatrix} \tau^{-} \rightarrow \pi^{-} \pi^{0} v_{\tau} \end{bmatrix}}{\mathsf{BR} \begin{bmatrix} \tau^{-} \rightarrow e^{-} \overline{v}_{e} v_{\tau} \end{bmatrix}} \begin{array}{c} 1 & \frac{dN_{\pi\pi^{0}}}{N_{\pi\pi^{0}}} & \frac{m_{\tau}^{2}}{ds} \\ \frac{1 & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} & \frac{m_{\tau}^{2}}{\sqrt{\pi}} \\ \frac{1 & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} & \frac{m_{\tau}^{2}}{\sqrt{\pi}} \\ \frac{1 & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} & \frac{m_{\tau}^{2}}{\sqrt{\pi}} \\ \frac{1 & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} & \frac{m_{\tau}^{2}}{\sqrt{\pi}} \\ \frac{1 & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} & \frac{m_{\tau}^{2}}{\sqrt{\pi}} \\ \frac{1 & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} \\ \frac{1 & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} \\ \frac{1 & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} \\ \frac{1 & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} \\ \frac{1 & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} \\ \frac{1 & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} & \frac{dN_{\pi\pi^{0}}}{\sqrt{\pi}} \\ \frac{dN$$

SU(2) breaking (EM): short/long distance and mass corrections, $\rho-\omega$ interference

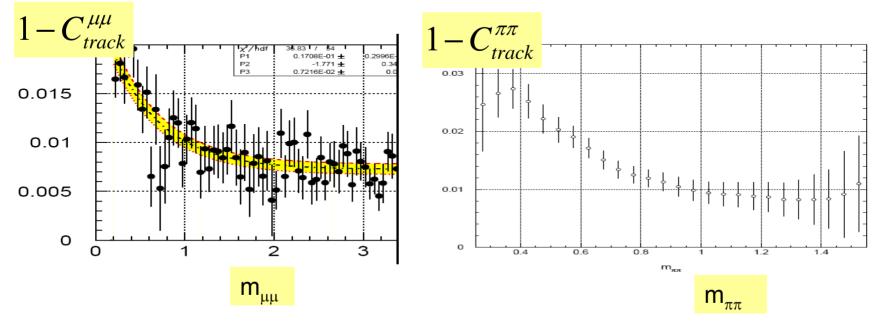
e^+e^- - τ Data Comparison since 2006

⇒problems: overall normalization

shape (especially above ρ)

FCPPL 24-Mar-2009

Next steps in BaBar analysis


- still preliminary results (presented at Tau Workshop, Sept. 2008)
- data not shown below 0.5 GeV: problems noticed (near threshold)
- also new consistency check between loose and tight χ^2 not satisfactory (systematic uncertainty enlarged)
- problems now understood
- new results in progress
- BaBar review
- final results in a couple of months

Data/MC tracking correction to $\pi\pi\gamma$, $\mu\mu\gamma$ cross sections

- single track efficiency
- correlated loss probability f₀
- probability to produce more than 2 tracks f₃

$$C_{track}^{\mu\mu} = \left(\frac{\varepsilon_{track}^{data}}{\varepsilon_{track}^{MC}}\right)^2 \frac{(1 - f_0 - f_3)^{data}}{(1 - f_0 - f_3)^{MC}}$$

and similarly for $\pi\pi$

L.L. WANG BaBar pi pi

Analysis steps

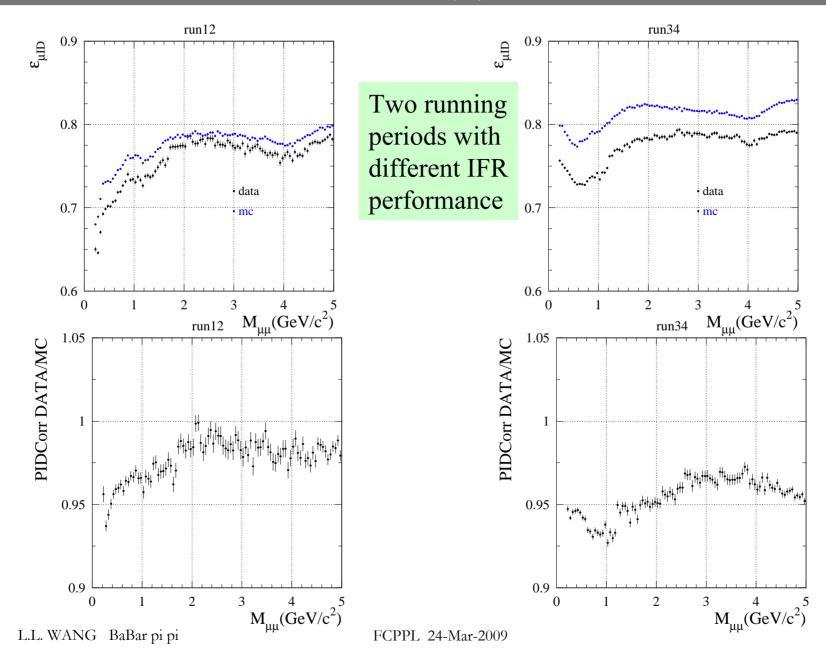
- Triggers (L1 hardware, L3 software), background-filter efficiencies
- Tracking efficiency
- Particle ID matrix (ID and mis-ID efficiencies)

```
μ
π
Κ
```

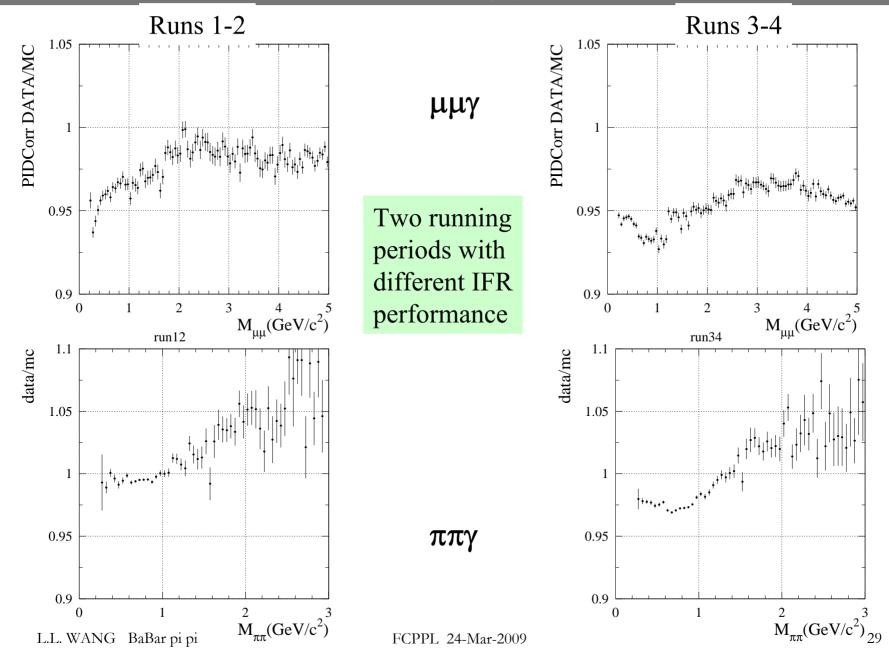
Kinematic fitting

```
reduce non 2-body backgrounds
```

 χ^2 cut efficiency

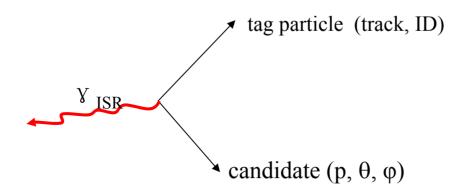

additional radiation (ISR and FSR)

secondary interactions


- Unfolding of mass spectra
- Geometrical acceptance
- Consistency checks for $\mu\mu$ (QED test, ISR luminosity) and $\pi\pi$
- Unblinding R
- Results on $\pi\pi$ cross section and calculation of dispersion integral

Preliminary Final

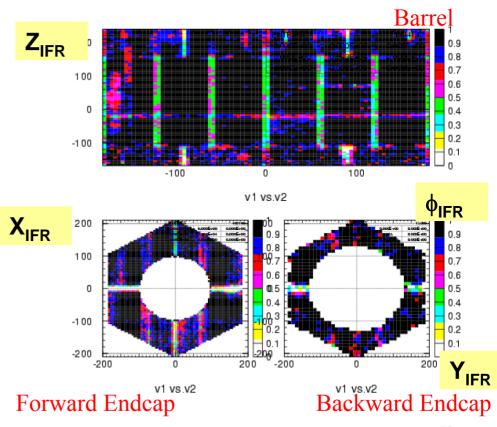
PID correction to µµ cross section


Data/MC PID corrections to $\mu\mu$ and $\pi\pi$ cross sections

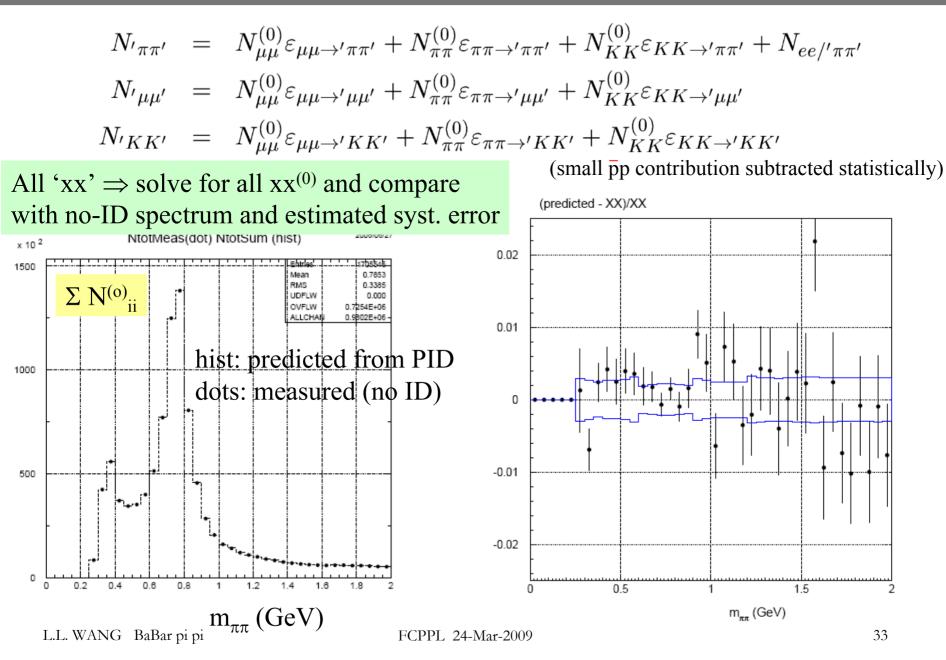
Measurement of π -ID efficiencies

- ' π ' ID is a set of negative conditions
- use π sample from ISR-produced ρ with π_h tag: 0.6<m_{$\pi\pi$}<0.9 GeV impurity = (3.7±0.5) 10⁻³
- ID and mis-ID efficiencies stored in 2D maps
- unlike muons, efficiency sample is not from isolated tracks
- biases from tagging and correlated loss studied with MC 10⁻³ level

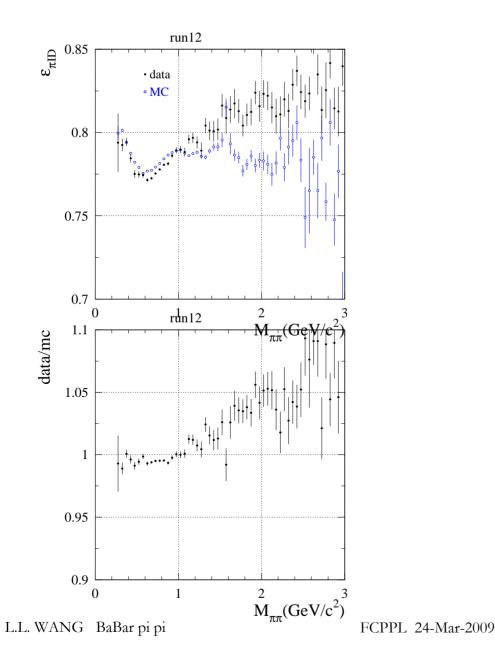
Particle-related efficiency measurements

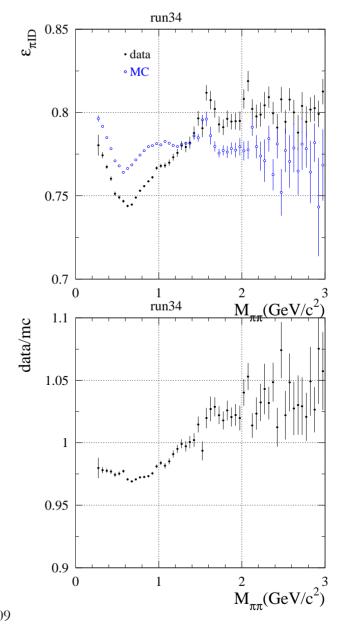

- benefit from pair production for particle ID
- kinematically constrained events
- efficiency automatically averaged over running periods
- measurement in the same environment as for physics, in fact same events!
- applied to particle ID with $\pi/K/\mu$ samples, tracking, study of secondary interactions...
- assumes that efficiencies of the 2 particles are uncorrelated
- in practice not true ⇒ this is where 95% of the work goes! study of 2-particle overlap in the detector (trigger,tracking, EMC, IFR) required a large effort to reach per mil accuracies (hence the duration of the analysis)

Particle identification

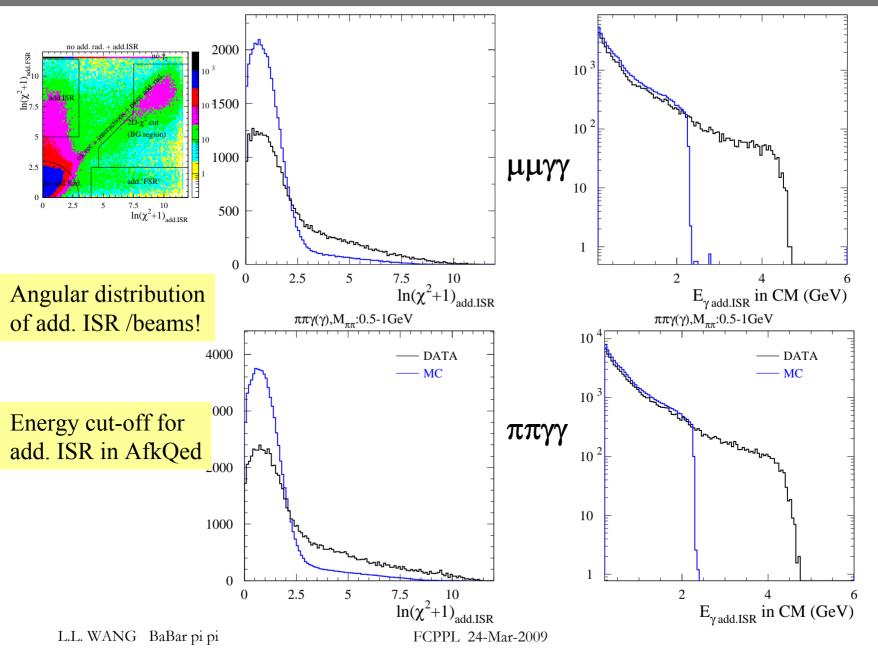

- Particle identification required to separate XXγ final processes
- Define 5 ID classes using cuts and PID selectors (complete and orthogonal set)
- Electrons rejected at track definition level (E_{cal}, dE/dx)
- All ID efficiencies measured

 $\epsilon_{x \to I}$

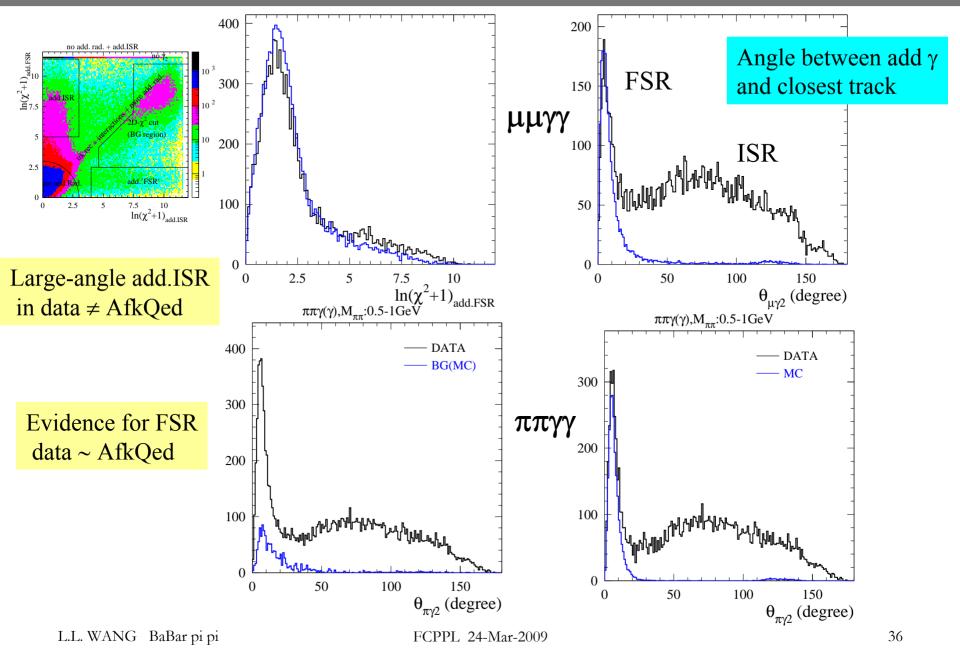

• a tighter π ID (π_h) is used for tagging in efficiency measurements and to further reject background in low cross section regions. * isolated muons Mµµ > 2.5 GeV
→ efficiency maps (p,v₁,v₂)
impurity (1.1±0.1) 10⁻³
* correlated efficiencies/close tracks
→ maps (dv₁,dv₂)



PID separation and Global Test



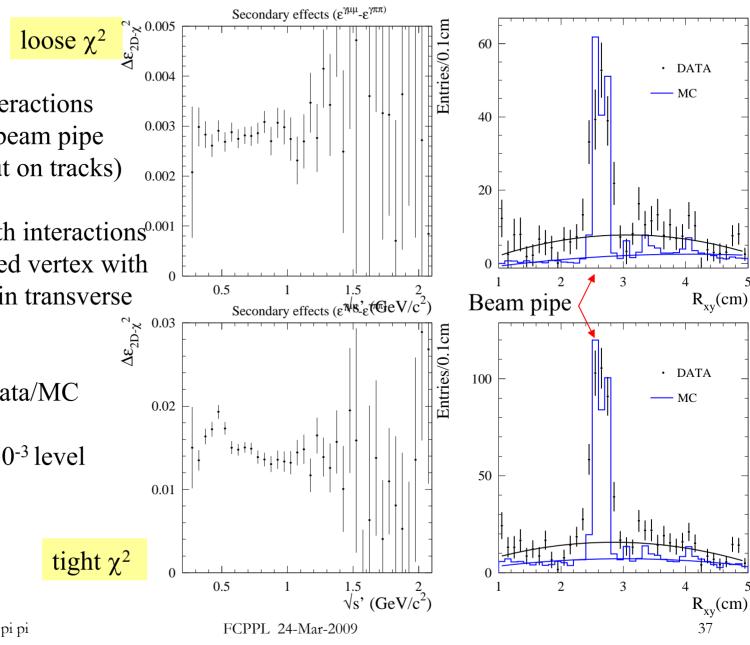
PID correction to $\pi\pi$ cross section



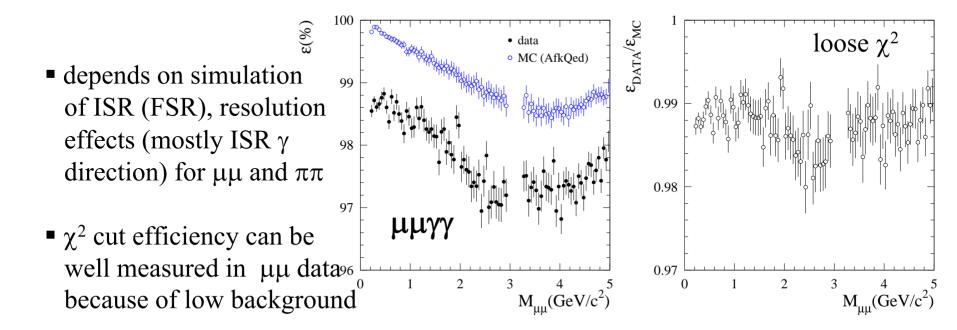
Additional ISR

35

Additional FSR



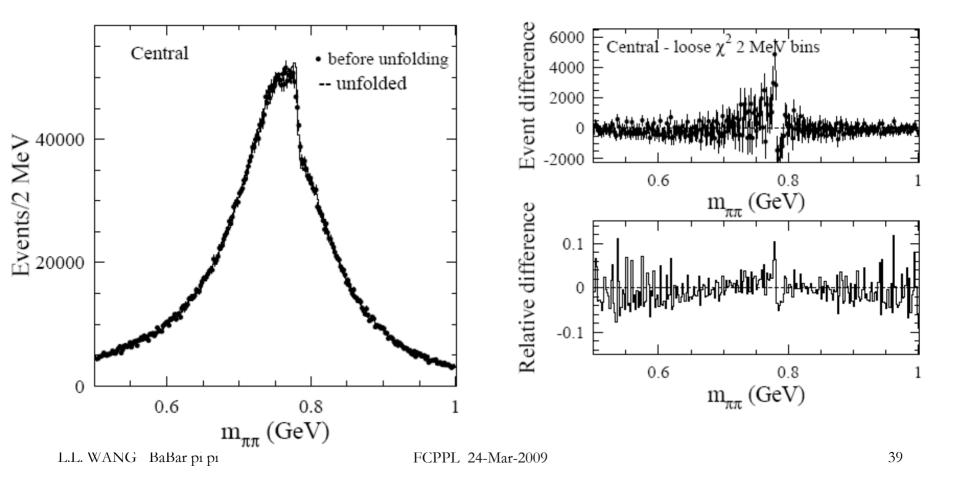
χ^2 cut Efficiency Correction: Interactions


- secondary interactions mostly from beam pipe (tight doca cut on tracks)
- tag events with interactions^{0.001} using displaced vertex with a 'bad' track in transverse plane (R_{xv})
- comparison data/MC

syst error at 10⁻³ level

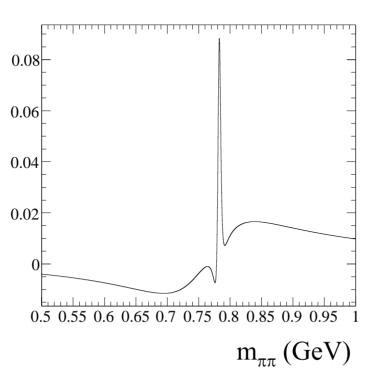
L.L. WANG BaBar pi pi

χ^2 cut efficiency correction



- main correction from lack of angular distribution for additional ISR in AfkQed
- common correction: 1% for loose χ^2 , 7% for tight χ^2
- additional loss for ππ because of interactions studied with sample of interacting events correction data/MC

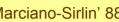
 $(J/\psi \text{ region excluded})$


Unfolding the $\pi\pi$ mass spectrum

- measured mass spectrum distorted by resolution effects and FSR ($m_{\pi\pi}$ vs. s')
- unfolding uses mass-transfer matrix from simulation
- 2 MeV bins in 0.5-1.0 GeV mass range, 10 MeV bins outside
- most salient effect in ρ - ω interference region (little effect on $a_{\mu}^{\pi\pi}$)

Mass calibration

mass calibration using J/ ψ —> $\mu\mu$, scaled to ρ region : (0.16 ± 0.16) MeV) mass resolution 6 MeV



SU(2) breaking in τ and ee spectral functions

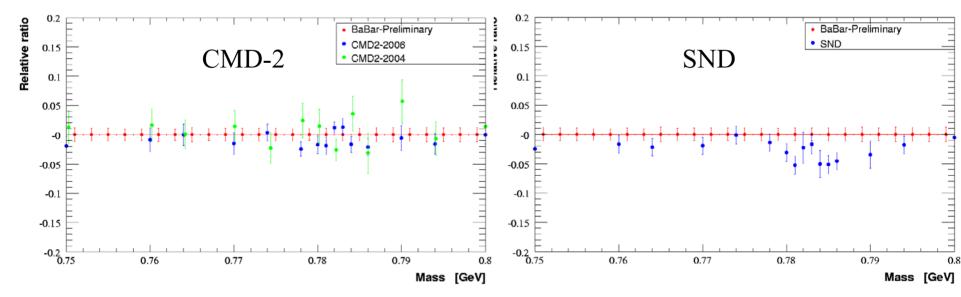
Electromagnetism does not respect isospin and hence we have to consider isospin breaking when dealing with an experimental precision of better than 1%

Corrections for SU(2) breaking applied to τ data for dominant $\pi^-\pi^+$ contrib.:

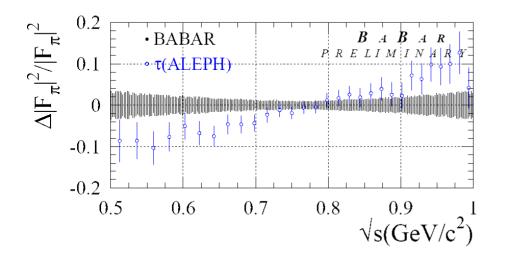
- Electroweak radiative corrections:
 - dominant contribution from short distance correction S_{EW} to effective 4-fermion coupling $\propto (1 + 3\alpha(m_{\tau})/4\pi)(1+2\langle Q \rangle)\log(M_{T}/m_{\tau})$ Marciano-Sirlin' 88
 - subleading corrections calculated and small
 - long distance radiative correction $G_{EM}(s)$ calculated [add FSR to the bare cross section in order to obtain $\pi^-\pi^+(\gamma)$]
- Charged/neutral mass splitting:
 - $m_{\pi^-} \neq m_{\pi^0}$ leads to phase space (cross sec.) and width (FF) corrections
 - ρ - ω mixing (EM $\omega \rightarrow \pi^-\pi^+$ decay) corrected using FF model
 - $m_{a-} \neq m_{a0}$ and $\Gamma_{a-} \neq \Gamma_{a0}$ [not corrected !]
 - Lopez Castro et al. 08 Electromagnetic decays, like: $\rho \rightarrow \pi \pi \gamma$, $\rho \rightarrow \pi \gamma$, $\rho \rightarrow \eta \gamma$, $\rho \rightarrow t'$
- Quark mass difference $m_{\mu} \neq m_{d}$ generating "second class currents" (negligible)

Braaten-Li' 90

Cirigliano-Ecker-Neufeld' 02 Lopez Castro et al. 06

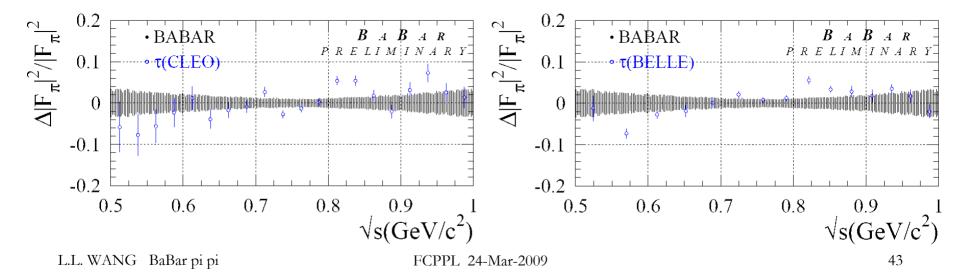

Alemany-Davier-Höcker' 97, Czyż-Kühn' 01

BaBar vs.CMD-2 and SND (ρ - ω interference region)

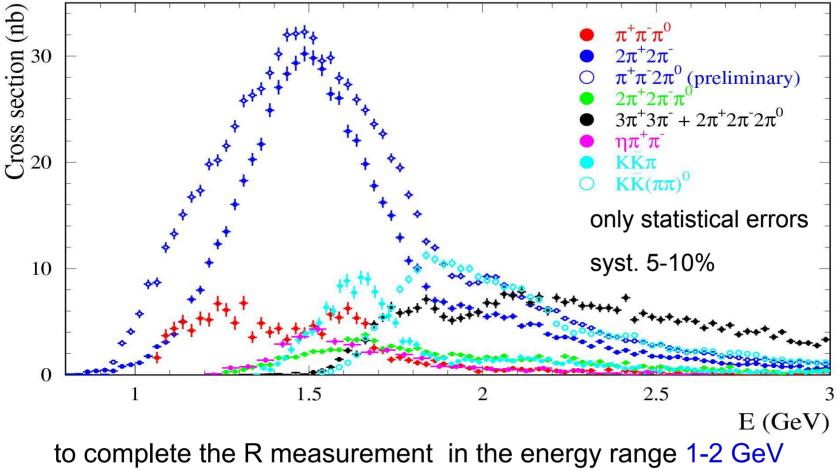

 \bullet mass calibration of BaBar checked with J/ $\psi \rightarrow \! \mu \mu$

–(0.16 \pm 0.16) MeV at ρ peak

- ω mass can be determined through mass distribution fit (in progress)
- Novosibirsk data precisely calibrated using resonant depolarization
- comparison BaBar/CMD-2/SND in ρ-ω interference region shows no evidence for a mass shift


BaBar vs. IB-corrected τ data (0.5-1.0 GeV)

relative comparison w.r.t. BaBar of isospin-breaking corrected τ spectral functions


BaBar data averaged in wider τ bins and corrected for ρ - ω interference

Belle 2008: large statistics

Multihadronic channels: BaBar ISR measurements

many ISR BaBar results already published on $e^+e^ \rightarrow$ hadrons for larger multiplicities

the processes $\pi^+\pi^-3\pi^0$, $\pi^+\pi^-4\pi^0$, K⁺K⁻, K_SK_L, K_SK_L $\pi\pi$, K_SK^{+- $\pi^{-+}\pi^0$ are being measured}

Contributions to a_{μ}^{had} from multihadronic modes

- The BaBar results are the most precise measurements to date for CM energies greater than 1.4 GeV.
- Examples: contributions to a_{μ}^{had} (×10⁻¹⁰) from $2\pi^+ 2\pi^-$ (0.56 1.8 GeV) • from all $e^+ e^- exp$. $14.21 \pm 0.87_{exp} \pm 0.23_{rad}$ $12.35 \pm 0.96_{exp} \pm 0.40_{SU(2)}$ from all τ data from BaBar $12.95 \pm 0.64_{exp} \pm 0.13_{rad}$ from $\pi^+ \pi^- \pi^0$ (1.055 – 1.8 GeV) from all $e^+ e^- exp$. $2.45 \pm 0.26_{\rm exp} \pm 0.03_{\rm rad}$ $3.31 \pm 0.13_{exp} \pm 0.03_{rad}$ from BaBar

reminder: total 690.9 \pm 4.4 (DEHZ 2006)

Outlook for muon g–2 SM prediction

Hadronic LO contribution

- potentially existing e+e- data can reach a precision $\Delta a_{\mu}^{had} = 2.5 (10^{-10})$
- hopeful that remaining discrepancies will be brought close to quoted systematic uncertainties
- use of τ data limited by knowledge of isospin-breaking corrections: present precision 2.5 (10⁻¹⁰), total error 3.9 (10⁻¹⁰), work in progress
- new data expected from VEPP-2000 with CMD-2 and SND

Hadronic LBL contribution

- relies only on phenomenological estimates, precision $\Delta a_{\mu}^{hadLBL} = 3.5 (10^{-10})$
- more progress? lattice?

Other contributions

• QED, electroweak, HO hadronic: $\Delta a_{\mu}^{\text{others}} = 0.2 (10^{-10})$

g-2 experimental error

- BNL E821 (2004) $\Delta a_{\mu}^{exp} = 6.3 (10^{-10})$
- a new measurement will be needed to match the 'theory' uncertainty