

Université Claude Bernard (🕼) Lyon 1

Higher order $\gamma\gamma$ Generator Studies

N. Chanon, S. Gascon-Shotkin, M. Lethuillier 23/03/2009 – FCPPL Workshop (Wuhan)

I – Direct Box contributions II – Complete Direct contributions III – Direct and fragmentation contributions IV – Diphox Born and Gamma2MC Box combination with frag IV – H->γγ signal with respect to background

Higher order γγ Generator Studies Introduction

The H->γγ searches need the best possible preliminary estimate of the 2 photon background. At generator level, a robust description of γγ + X events can be provided by NLO calculations, like **Diphox** [J.P. Guillet, E. Pilon, T. Binoth] and **Gamma2MC** [Z. Bern, L. Dixon, and C. Schmidt]. For the Higgs signal, **HNNLO** can provide a description at NNLO [S. Catani, M. Grazzini]
The distributions of variables susceptible to be kinematically sensitive to higher-order effects have to be scrutinized, and confronted with the first data in CMS (as they were at the TevaTron), to increase the discriminating power of the 2 photon analysis and the Higgs to 2 photons analysis.

CMS

Université Claude Bernard (🕼) Lyon 1

Higher order $\gamma\gamma$ Generator Studies NLO generators of $\gamma\gamma$ processes

BOX

BREM

ONE FRAG

TWO FRAG

DIRECT

NLO codes

	type of code	Direct	One Frag.	Two Frag.
Aurenche et al.	I/FO	NLO	LO	none
Owens et al.	G/FO	NLO	LO	none
DIPHOX (*)	G/FO	NLO	NLO	NLO
RESBOS	G/SGS	NLO	LO	none

1	:	Inclusive
G	:	Generator
FO	:	Fixed Order
SG	S:	Soft Gluon Summation
(*)	nttp://www.lapp.in2	2p3.fr/lapth/PHOX_FAMILY/main.html

BOX : gamma2MC & Resbos: LO and NLO Box [already NLO] + corrections [up to N3LO])

Corrections to box

=> The most complete description would seem to be possible with DIPHOX for all contributions but box, interfaced with Gamma2MC for Box

Higher order γγ Generator Studies 2 gamma and Higgs analysis

<u>Generators :</u> Gamma2MC, DIPHOX (2 photons), and HNNLO (H->γγ)

For this preliminary study we have considered 2 sets of selection criteria :

2gamma parameters : (Marat et al.)

- pp, 10 TeV
- |eta|<1.442 (barrel only for the moment), pT_γ1>10 GeV, pT_γ2>10 GeV, 40<m_γγ<1500 GeV
- "HCAL" isolation : sum of hadronic Et < 6 GeV in the barrel inside dR=0.35 around each photon

H->γγ PTDR parameters :

- pp, 14 TeV
- |eta|<2.5, pT_γ1>40 GeV, pT_γ2>35 GeV, 40<m_γγ<1500 GeV
- "HCAL" isolation : sum of hadronic Et < 6 GeV in the barrel inside dR=0.3 around each photon

Higher order γγ Generator Studies

Box contributions cross sections

$2 { m gCuts}$	$\sigma_{LO} (\text{pb})$	σ_{NLO} (pb)
Direct Box DIPHOX	18.22	-
Direct Box Gamma2MC	17.71	23.25
PTDR	$\sigma_{LO} (\text{pb})$	σ_{NLO} (pb)
Direct Box DIPHOX	3.24	-
Direct Box Gamma2MC	3.16	5.40

- For LO contribution, Diphox and Gamma2MC have cross sections that agree quite well. The small difference is under investigation (maybe a difference in the loop number in the calculation of the QCD parameter α s)

- Diphox cannot compute the Box contribution at NLO.

Université Claude Bernard (() Lyon 1

Higher order γγ Generator Studies I – Direct Box contributions Mgg : gamma-gamma invariant mass

I – Direct Box contributions

Mgg : gamma-gamma invariant mass

Higher order % Generator Studies

II – Complete Direct contributions

Born+Box contributions cross sections

2gCuts	σ_{LO} (pb)	σ_{NLO} (pb)
Direct Born DIPHOX	16.78	46.79
Direct BornBox DIPHOX	34.99	65.00
Direct Born DIPHOX + Box $Gamma2MC$	34.49	70.04
PTDR	$\sigma_{LO} (pb)$	σ_{NLO} (pb)
Direct Born DIPHOX	5.86	14.39
Direct BornBox DIPHOX	9.11	16.93
Direct Born DIPHOX + Box Gamma2MC	9.03	19.79

At NLO, the process Born DIPHOX + Box Gamma2MC has a bigger cross section than the BornBox DIPHOX (~8% more for 2 photon cuts, ~16% more for the Higgs PTDR curs), which is not surprising considering the importance of the corrections to box taken into account by Gamma2MC and not by DIPHOX.

Université Claude Bernard 🕼 Lyon 1

Higher order $\gamma\gamma$ Generator Studies

II – Complete Direct contributions

Mgg : gamma-gamma invariant mass

Higher order yy Generator Studies

III – Direct and fragmentation contributions

$2 { m gCuts}$	$\sigma_{LO} (pb)$	$\sigma_{NLO} (pb)$
Direct Born DIPHOX	16.78	46.79
Direct BornBox DIPHOX	34.99	65.00
Direct Born DIPHOX + Box $Gamma2MC$	34.49	70.04
Onefrag DIPHOX	10.04	20.06
Twofrag DIPHOX	0.58	1.50
Direct BornBox DIPHOX + $Onefrag + Twofrag$	45.61	86.56
$\label{eq:direct} \mbox{Direct Born DIPHOX} + \mbox{Box Gamma2MC} + \mbox{Onefrag} + \mbox{Twofrag}$	45.11	91.60
PTDR	$\sigma_{LO} (pb)$	$\sigma_{NLO} (pb)$
PTDR Direct Born DIPHOX	$\frac{\sigma_{LO} \text{ (pb)}}{5.86}$	$\sigma_{NLO} \text{ (pb)}$ 14.39
PTDR Direct Born DIPHOX Direct BornBox DIPHOX	$\sigma_{LO} (pb)$ 5.86 9.11	$\sigma_{NLO} (pb)$ 14.39 16.93
PTDR Direct Born DIPHOX Direct BornBox DIPHOX Direct Born DIPHOX + Box Gamma2MC	$\sigma_{LO} (pb)$ 5.86 9.11 9.03	$\sigma_{NLO} (pb)$ 14.39 16.93 19.79
PTDR Direct Born DIPHOX Direct BornBox DIPHOX Direct Born DIPHOX + Box Gamma2MC Onefrag DIPHOX	$\sigma_{LO} (pb)$ 5.86 9.11 9.03 1.56	$\sigma_{NLO} (pb)$ 14.39 16.93 19.79 3.10
PTDR Direct Born DIPHOX Direct BornBox DIPHOX Direct Born DIPHOX + Box Gamma2MC Onefrag DIPHOX Twofrag DIPHOX	$\sigma_{LO} (pb)$ 5.86 9.11 9.03 1.56 0.03	$\sigma_{NLO} (pb)$ 14.39 16.93 19.79 3.10 0.10
PTDR Direct Born DIPHOX Direct BornBox DIPHOX Direct Born DIPHOX + Box Gamma2MC Onefrag DIPHOX Twofrag DIPHOX Direct BornBox DIPHOX + Onefrag + Twofrag	$\sigma_{LO} (pb)$ 5.86 9.11 9.03 1.56 0.03 10.71	$\sigma_{NLO} (pb)$ 14.39 16.93 19.79 3.10 0.10 20.13

III – Direct and fragmentation contributions

Mgg : gamma-gamma invariant mass

Higher order γγ Generator StudiesIII – Direct and fragmentation contributions

PtLead : transverse momentum of the leading photon

IV – Diphox Born and Gamma2MC Box combination with frag

2 m gCuts	$\sigma_{LO} (pb)$	σ_{NLO} (pb)
Direct Born DIPHOX	16.78	46.79
Direct BornBox DIPHOX	34.99	65.00
Direct Born DIPHOX + Box $Gamma2MC$	34.49	70.04
Onefrag DIPHOX	10.04	20.06
Twofrag DIPHOX	0.58	1.50
Direct BornBox DIPHOX + $Onefrag + Twofrag$	45.61	86.56
$\label{eq:direct} \mbox{Direct Born DIPHOX} + \mbox{Box Gamma2MC} + \mbox{Onefrag} + \mbox{Twofrag}$	45.11	91.60
PTDR	$\sigma_{LO} (pb)$	$\sigma_{NLO} (pb)$
PTDR Direct Born DIPHOX	$\frac{\sigma_{LO} \text{ (pb)}}{5.86}$	$\frac{\sigma_{NLO} \text{ (pb)}}{14.39}$
PTDR Direct Born DIPHOX Direct BornBox DIPHOX	$\sigma_{LO} (pb)$ 5.86 9.11	$\sigma_{NLO} (pb)$ 14.39 16.93
PTDR Direct Born DIPHOX Direct BornBox DIPHOX Direct Born DIPHOX + Box Gamma2MC	$\sigma_{LO} (pb)$ 5.86 9.11 9.03	$\sigma_{NLO} (pb)$ 14.39 16.93 19.79
PTDR Direct Born DIPHOX Direct BornBox DIPHOX Direct Born DIPHOX + Box Gamma2MC Onefrag DIPHOX	$\sigma_{LO} (pb)$ 5.86 9.11 9.03 1.56	$\sigma_{NLO} (pb)$ 14.39 16.93 19.79 3.10
PTDR Direct Born DIPHOX Direct BornBox DIPHOX Direct Born DIPHOX + Box Gamma2MC Onefrag DIPHOX Twofrag DIPHOX	$\sigma_{LO} (pb)$ 5.86 9.11 9.03 1.56 0.03	$\sigma_{NLO} (pb)$ 14.39 16.93 19.79 3.10 0.10
PTDR Direct Born DIPHOX Direct BornBox DIPHOX Direct Born DIPHOX + Box Gamma2MC Onefrag DIPHOX Twofrag DIPHOX Direct BornBox DIPHOX + Onefrag + Twofrag	σ_{LO} (pb) 5.86 9.11 9.03 1.56 0.03 10.71	σ_{NLO} (pb) 14.39 16.93 19.79 3.10 0.10 20.13

IV – Diphox Born and Gamma2MC Box combination with frag

CosThetaStar

IV – Diphox Born and Gamma2MC Box combination with frag

Ystar : (η1-η2)/2

Higher order $\gamma\gamma$ Generator Studies V – H-> $\gamma\gamma$ signal

Background : Direct Born Diphox + direct Box Gamma2MC + 1 Frag + 2 Frag Signal : H->γγ mH=120 GeV HNNLO Signal / Background Cross-sections

Signal cross-sections :

Background cross-section :

mH = 120 2gamma cuts LO : 7.47 +/- 0.00 fb

mH = 120 2gamma NLO : 17.49 +/- 0.01 fb

mH = 120 2gamma cuts NNLO : 23.91 +/- 0.20 fb

2gamma cuts Bkgd LO : 45.11 *pb* 2gamma Bkgd NLO : 91.60 *pb*

mH = 120 PTDR cuts LO : 20.24 +/- 0.00 fb mH = 120 PTDR cuts NLO : 46.06 +/- 0.02 fb mH = 120 PTDR cuts NNLO : 58.93 +/- 0.49 fb

PTDR cuts Bkgd LO : 10,62 *pb* PTDR cuts Bkgd NLO : 20,13 *pb*

=> Corrections increase the ratio signal/bkgd.

17

Higher order $\gamma\gamma$ Generator Studies

V – H->γγ signal

Mgg : gamma-gamma invariant mass

Higher order γγ Generator Studies V – Η->γγ signal CosThetaStar

Globally, signal CosThetaStar decreases faster than the background, constantly for the 2 photon analysis, and rapidly at high costhetastar for the higgs analysis.

V – H->γγ signal

PtLead : transverse momentum of the leading photon

The cut at 40 GeV for the leading photon is very useful in the Higgs analysis.

Higher order γγ Generator Studies V – Η->γγ signal Ystar : (η1-η2)/2

NLO and NNLO signal more centred on zero

Higher order γγ Generator Studies Conclusions and future plans

- Diphox does not compute the NLO Box contribution, whereas Gamma2MC does. Gamma2MC corrections to Box are important, especially for $M\gamma\gamma$ <120 GeV

- The fragmentation contributions are not negligible (~20 pb in a process of ~90 pb for the 2 photon analysis), and not included in ResBos.
- It's inaccurate to reweight simply LO distributions with K-factors independent of the variables.

Perspectives :

- New MadGraph and <u>MC@NLO</u> samples are becoming available. Compare them and PYTHIA born and box contributions to DIPHOX/Gamma2MC.
- Reweighting of $\gamma\gamma$ LO ME key distributions with gamma2MC for the NLO Box plus DIPHOX for all other direct and fragmentation diagrams. Cross-check with Resbos.
- Continue to compare the H-> $\gamma\gamma$ distributions with the Born+Box NLO distributions to see if some variables could be more discriminating than at LO.
- Investigate the issue of isolation cone saturation at reconstructed vs generated level.

Thanks to the FCPPL organisation to allow us to go in Wuhan, and Guoming Chen who invited me to work at IHEP the next months

BACK-UP SLIDES

I – Direct Box contributions

CosThetaStar : Cosinus of the angle between the diphoton system and one of the photon, in

the center of mass of the diphoton system.

Université Claude Bernard 🛛 🖓 Lyon 1

Higher order γγ Generator Studies I – Direct Box contributions

PtLead : transverse momentum of the leading photon

ons

I – Direct Box contributions

CosThetaStar : Cosinus of the angle between the diphoton system and one of the photon, in

the center of mass of the diphoton system.

I – Direct Box contributions

PtLead : transverse momentum of the leading photon

III – Direct and fragmentation contributions

Ystar : (η1-η2)/2

