Preparatory study for QED ME/PS matching

C. Bâty S. Gascon M. Lethuillier

(IPNL, Université Lyon 1, Université de Lyon)

.I Tao

IHEP (Beiiina)

M. Moretti F. Piccinini R. Pittau

(Univ. Ferrara/INFN, Univ. Pavia/INFN, Univ. Torino/INFN & Univ. Grenada)

FCCPL 2009: "Experiments at LHC and related theory III" session

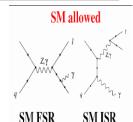
March 23, 2009

- Study presentation
- Study results
- Conclusions and Prospects

Study presentation

Global overview

- Nowdays, generation of physical process are usually made using: ME generation of the "hard event" with ME generator (ALPGEN(1), MadGraph(3)...)
- PS fragmentation and hadronisation made with PS algorithm (PYTHIA(2), Herwig...) The double counting problem between ME & PS jets has been adressed with "QCD matching" at the "particle level" (after the creation of partonic shower).
- A similar double-counting problem exists for **photons** and has not vet been addressed by a matching algorithm.


Goal:

Select the photons of ME or PS generators in the kinematic phase space where they are the most releavent avoiding double counting.

Our test channel: $Z \rightarrow \mu \mu + \gamma$, its relevances for the LHC:

Use of "internal bremstrahhluna" allows the following measurements from (future) real data:

- photon trigger efficiency
- photon energy scale
- photon identification efficiency
- photon energy corrections
- \bullet E_{t} : 5 200 GeV pertinent range for ECAL energy calibration (between typical Pt of π_0 and γ from Higgs Boson decay).

Study presentation More details of our study

We study the generation of this channel via two different procedures:

First, use the ALPGEN generator in the inclusive channel $Z \to \mu\mu$, and then use the PYTHIA generator for the partonic shower. This sample will be called Z0 because it comes from Z decay but without explicit γ in the hard event.

3 / 14 Clément Bâty

Study presentation More details of our study

ore details of our study

We study the generation of this channel via two different procedures:

- First, use the ALPGEN generator in the inclusive channel $Z \to \mu\mu$, and then use the PYTHIA generator for the partonic shower. This sample will be called 20 because it comes from Z decay but **without** explicit γ in the hard event.
- Second, we use ALPGEN to generate process $Z \to \mu\mu + \gamma$ before using PYTHIA (with ISR/FSR switched off in PYTHIA). This sample will be called Z1 because ALPGEN generator forced a ME γ .

3 / 14 Clément Bâty

Study presentation

More details of our study

We study the generation of this channel via two different procedures:

- lacktriangle First, use the ALPGEN generator in the inclusive channel $Z o \mu\mu$, and then use the PYTHIA generator for the partonic shower. This sample will be called $\frac{ZO}{D}$ because it comes from Z decay but without explicit γ in the hard event.
- Second, we use Alpgen to generate process $Z \to \mu \mu + \gamma$ before using PYTHIA (with ISR/FSR switched off in PYTHIA). This sample will be called ZI because ALPGEN denerator forced a ME γ .

So, in these two procedures, we use both PYTHIA and ALPGEN but forcing (or not) the creation of a ME γ . The underlying event and the hadronisation are supressed in order to allow the deconvoluted study of ME and PS γ

Goal of this study

- Identify phase space of possible observables where ME/PS descriptions differ: $\Delta_R(\gamma,\mu)$ and γ_{PT}
- Determinate zone of agreement between PS/ME description for defining a zone where we can choose "cutoffs"
- Check the robustness of this range under the "anti-double-counting veto" (to be describe later) by studying the stability of:
 - ightarrow the total cross-section: $\sigma_f = \sigma_i imes rac{N_{\it final_after_veto}}{N_{\it generated}}$
 - \rightarrow the shape of the combined curves (20 + 21) after veto application, in order to check if thev are sensitive to the "cutoffs".
- If all is stable, select the "cutoffs" at the generator level as high as possible to increase generation efficiency.

3/14Clément Bâty

Study presentation

Generator parameters for reference samples

"Reference" samples

Generated for both processes (ZO & Z1) with the following loose cuts:

$$PT_{\mu} > 15 GeV$$

 $|\eta| < 3.0$
 $M_{\mu\mu} = 20 GeV < M_{\mu\mu} < 150 GeV$

$$\begin{array}{ll} \textit{PT}_{\gamma} &> 1 \textit{GeV} & \text{(for Z1 only)} \\ \mid \eta_{\gamma} \mid &< 3.0 & \text{(for Z1 only)} \\ \Delta_{\mathcal{B}}(\mu \gamma) &> 0.05 & \text{(for Z1 only)} \end{array}$$

We have used the following parameters

- PS has been made with PYTHIA 6.408
- In each event after PS we only plot the highest-pt γ with

$$\stackrel{\prime}{\Delta}_R >$$
 0.05 & PT $_{\mu\mu} >$ 1GeV & $|\eta| <$ 3.0

Both samples are normalized to one.

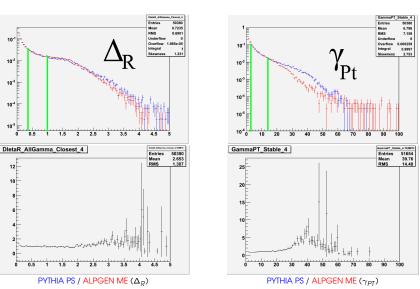
Generation parameters

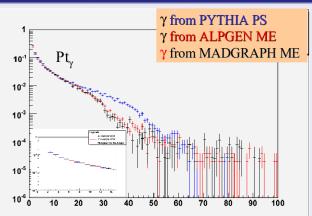
$$\begin{split} &M_{(W)} = 80.419, \Gamma_{(W)} = 2.4807653, \\ &M_{(Z)} = 91.188, \Gamma_{(Z)} = 2.44194427, M_{(H)} = 120, \\ &\Gamma_{(H)} = 0, g_W = 0.65323291, \end{split}$$

$$\sin^2(\theta_W) = 0.222246533,$$

$$\frac{1}{a_{\text{em}} \times (M_Z)} = 132.50698, m_t = 174.3, m_b = 4.7, PDFset = CTEQ5L, a_s(M_Z)[n_{loop} = 1] = 0.127003172$$

Percentage of events surviving these cuts:

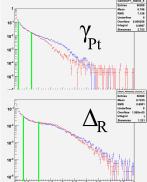

$$Z \to \mu\mu$$
 Z0: $\simeq 52K/500K \simeq 11\%$ with γ coming from PYTHIA PS $Z \to \mu\mu + \gamma$ Z1: $\simeq 50K/52K \simeq 96\%$ with γ coming from Alpgen ME

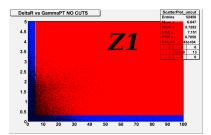

Study results: stability zone & "robustness test points" choice I/VIII

Cross-check of the shape of the ME γ_{PT} distribution

Cross-check of the <code>ALPGEN</code> γ_{PI} distribution shape with <code>MADGRAPH</code>

Same generation parameters used for MADGRAPH as for ALPGEN. We have a good agreement between this two different matrix element generators.



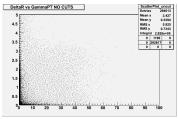

"Anti-double-counting veto" and robustness test strategy

Use veto procedure (using ALPGEN team prescription):

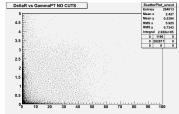
- **Z**₀ **keep** only events without any γ with $\Delta_{P} > \Delta_{P}$ Cut and $\gamma_{PT} > \gamma_{PT}$ Cut and $|\eta_{\gamma}| > \eta_{\gamma}$ Cut
- Z_1 **keep** only events with at least one γ with $\Delta_R > \Delta_R$ Cut and $\gamma_{PT} > \gamma_{PT}$ Cut and $|\dot{\eta_{\gamma}}| > \ddot{\eta_{\gamma}}$ Cut

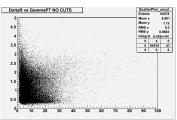
Examine the total X-section and shape of ZO + ZI for Δ_D and γ_{PT} for events surviving the veto.

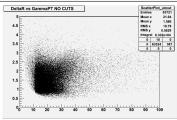
Choose 4 cut points in the phase space within "agreement zone" in order to avoid edge biases:


Sample	Δ_R Cut	γ_{PT} Cut	$ \eta_{\gamma} $ Cut $ $
Point A	0.35	3 GeV	2.7
Point B	0.35	14 GeV	2.7
Point C	1.00	3 GeV	2.7
Point D	1.00	14 GeV	2.7

- Generation of the 471 dedicated samples.
- We applied the veto procedure on both Z0 and Z1 corresponding samples.




Study results Independence of the studied vars


Sample ZO Point A

Sample ZO Point D

Sample Z1 Point A

Sample Z1 Point D

Results after veto: stability of total cross-section

Point	σ_{Z0_i}	σ_{Z0_f}
Α	$991.402 \pm 0.514 \mathrm{fb}$	953.411 ± 0.494 fb
В	991.402 ± 0.514 fb	979.365 ± 0.508 fb
С	$991.402 \pm 0.514 \mathrm{fb}$	970.905 ± 0.503 fb
D	$991.402 \pm 0.514 \mathrm{fb}$	$984.619 \pm 0.510 \mathrm{fb}$

Cross-section for the different ZO samples

Point	σ_{Z1_i}	σ_{Z1_f}
Α	41.34 ± 0.067 fb	29.683 ± 0.048 fb
В	9.056 ± 0.013 fb	$6.381 \pm 0.009 \mathrm{fb}$
С	24.51 ± 0.037 fb	$15.421 \pm 0.023 \mathrm{fb}$
D	5.619 ± 0.006 fb	$3.594 \pm 0.004 \mathrm{fb}$

Cross-section for the different 71 samples

Point	Z_0	Z_1
Α	3.832 %	28.2 %
В	1.214%	29.5 %
С	2.067 %	37.1 %
D	0.684 %	36.0 %
Events rejected by yete		

double-counted in absence of veto

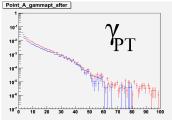
Point	$\sigma_{Tot} = \sigma_{ZO_f} + \sigma_{Z1_f}$
Α	983.094 ± 0.542 fb
В	985.746 ± 0.517 fb
С	986.326 ± 0.526 fb
D	988 213 + 0.514 fb

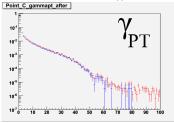
TOTAL cross-section for the samples

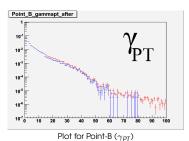
Remark: cross-section stability

The final cross-sections are compatible ($\approx 5^{\,0}/_{00}$) despite a small rising trend.

$$\begin{split} &\sigma_{Z0_{i}/Z1_{i}} &= \text{generation cross-section Z0 / Z1,} \\ &\sigma_{Z0_{f}/Z1_{f}} &= \sigma_{Z0_{i}/Z1_{i}} \times \frac{N_{total} - N_{veto}}{N_{total}}, \end{split}$$

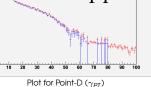

For Z1, the high percentage of vetoed events is an artifact of the difference between the "gen-level" and "match-level" cut values.




Distribution shape for γ_{PT} for $\overline{Z0}$ and $\overline{Z1}$

Plot for Point-A (γ_{PT})

Plot for Point-C (γ_{PT})

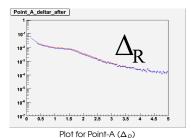

Point 0. gammapt after

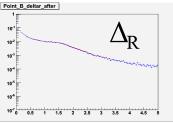
To 100

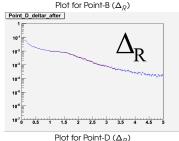
100

PT

PT

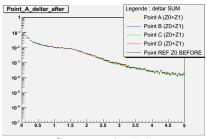


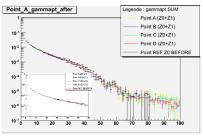




Distribution shape for Δ_R for Z0 and Z1

Point C deltar affer





Robustness tests: distribution shapes for γ_{PT} & Δ_R

Shape comparison (Δ_{P})

Shape comparisons (γ_{PT})

Distribution shapes γ_{PT} & Δ_R

- lacktriangle the curves for each study point are very similar (especially Δ_R) ightarrow the veto can be based only on the γ_{DT} variable.
- For γ_{PT} , we observe a better agreement among the test points A - > D than between them and the PS-photon-only reference curve before veto, particularly in the tails.

Remark: The REF curve used here contain only photons caming from PYTHIA PS generator before the veto

Conclusions

For the moment, we have achieved the following:

Determined the phase space of observables where the ME/PS description differs.

 $\Delta_R \& \gamma_{PT} \ \mathsf{OK}$

- 2 Determined the zone of validity where we can choose the "cutoff". OK
- 3 Check the robustness of the selected zone. OK
- $oxed{4}$ Choose the final cut maximizing the generation efficiency. $oxed{\mathsf{Imminent}}$

Conclusions:

- ullet Check the difference: Unexpected difference of ME γ_{PT} distribution shape cross-checked with MadGraph
- Order of magnitude of double-counting: 0.7 4% depending on position of cutoff within the zone
 of agreement. Veto is needed to allow double-counting less thant 0.5% in the region near the
 border of the zone of agreement.
- Stability of the cross-section after veto: the cross-section is stable within ≈ 5⁰/₀₀ with a small rising trend.
- Stability of the Δ_R distribution shape: the stability of the shape of Δ_R between PS and PS/ME
 combined distributions before versus after veto leads to the conclusion that it could be dropped
 as a veto variable.
- **Stability of the** γ_{PT} **distribution shape**: The curves for each study point are compatible (within statistical errors). There is a significant difference between the distributions of PS-only γ before veto and the distributions for the 4 PS/ME combined samples after veto.

13 / 14 Clément Bâty

Prospects

- Extension to other explicit γ orders: $Z + 2\gamma$, $Z + 3\gamma$, ...
- Extension to other channels that are potentially affected by EM double-counting: $m\gamma + njets$, $W + n\gamma + mjets$, ...
- Implementation: in ALPGEN of the EM PS/ME matching, test version made by authors and thought to be given to us soon for working.

Thanks : We want to thank the **ALPGEN** team for their help, especially for their inclusion of the $Z+\gamma$ (into a private version 2.11) and their work for the inclusion of PS/ME tools in their "work in progress" version. I want to thank the FCCP organisation for their work and stress the fact that it make me work with two chinese student (Tao & Zhen) for half of my thesis.

Backup slides

Bibliographie

L. Michaelangelo, L. Mangano, M. Moretti, R. Pittau, A. Polosa *ALPGEN TEAM*.

JHEP 0307:001, 2003 ALPGEN, a generator for hard multiparton processes in hadronic collisions

http://mlm.home.cern.ch/mlm/alpgen

T. Sjöstrand, S. Mrenna, P. Skands *THE PYTHIA TEAM*. JHEP 05:026, 2006 PYTHIA 6.4 physics and manual

http://project.hepforge.org/pythia6

J. Alwall, P. Demin, S. de Vissher, R. Frederix, M. Herquet, F. Maltoni, T. Stelzer MadGraph TEAM.

JHEP 0709:028,2007 MadGraph, MadEvent v4: The New Web Generation http://madgraph.hep.uiuc.edu/index.html

