EFT: the analysis approach and implementation in generators

CERN Jan 12 2016

Implementation status, UFO, MG5, Sherpa, Whizard. (Thank Silvan Kuttimalai and Jürgen Reuter)

- Available UFO models, results, etc...
- NLO status with MG5, HC and top-EFT.
- Summary

Approach

• SM Lagrangian supplemented with DIM-6 operators (hence SMEFT)

$$\mathcal{L}_{\rm EFT} = \mathcal{L}_{\rm SM} + \sum_{i} \frac{C_i O_i}{\Lambda^2}$$

- The physics goal is to determine the SM Lagrangian at Dim-6.
- Determining the operators for measurements makes sense only if a GLOBAL STRATEGY is used. Ideally the following should be done:
 - Assume all ops might **NOT** be zero at the measured scale.
 - Identify operators entering each observables.
 - Find enough observables to constrain all ops.
 - <u>Calculate observables.</u> —- where we need tools
 - Solve the system. cf. ATL-PHYS-PUB-2015-047

Status summary

EFT with MG5

- Simply follow: FeynRules->UFO->MG5
- <u>All higher-dimensional Lorentz structures</u> are supported in **UFO**.
- **ALOHA** translates Lorentz structures in UFO to helicity amplitude subroutines.
- In principle this is it. (At LO) all you can do with the SM can be done with higherdim operators. Except dynamical scales...

[1108.2040 Degrande et al.]

At <u>https://feynrules.irmp.ucl.ac.be/wiki/ModelDatabaseMainPage</u> you can find a list of EFT models ready for use.

EFTs with Sherpa

Silvan Kuttimalai

Institute for Particle Physics Phenomenology, Durham

EFTs with UFO and Sherpa [arXiv:1412.6478]

UFO-support Fully Automatized via Python Extension

- Loads UFO model
- Writes out a C++ model
- ► Writes out C++ routines for arbitrary Lorentz structures
- Compiles everything, installs library to be loaded at runtime
- Once installed, model is available for event generation
- Use identical model and parameter input as e.g. MadGraph

EFTs with UFO+Sherpa

- FeynRules/UFO accommodates very generic interactions
- Any EFT implemented in FeynRules/UFO can be simulated with Sherpa
- Arbitrary higher dimensional (EFT-) operators supported

EFTs with UFO and Sherpa [arXiv:1412.6478]

UFO Support Seamlessly Integrated with Framework

- High multiplicity tree-level MEs with Comix for hard scattering
- Fully automatized spin-correlated decay chains
- Events can be showered and hadronized as usual

EFTs with UFO and Sherpa [arXiv:1412.6478]

UFO Support Seamlessly Integrated with Framework

- High multiplicity tree-level MEs with Comix for hard scattering
- Fully automatized spin-correlated decay chains
- Events can be showered and hadronized as usual

Current Development

- First EFT applications with tree-level merging
- First steps towards fixed-order NLO with OpenLoops

(Thank Jürgen Reuter)

• Complete SM EFT at Dim-6 implemented in v2.2.8, in the Warsaw basis.

(Thank Jürgen Reuter)

• Complete SM EFT at Dim-6 implemented in v2.2.8, in the Warsaw basis.

[<u>B. Grzadkowski et al, 2010]</u>

	X^3		$arphi^6$ and $arphi^4 D^2$		$\psi^2 arphi^3$	Ī					
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(arphi^\dagger arphi) (ar{l}_p e_r arphi)$						
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{arphi\square}$	$(arphi^\daggerarphi) \Box (arphi^\daggerarphi)$	$Q_{u\varphi}$ $(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$							
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{arphi D}$	$\left(arphi^{\dagger} D^{\mu} arphi ight)^{\star} \left(arphi^{\dagger} D_{\mu} arphi ight)$	Q_{darphi}	$(arphi^\dagger arphi) (ar q_p d_r arphi)$						
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$										
	$X^2 \varphi^2$		$\psi^2 X \varphi$	$\psi^2 \varphi^2 D$							
$Q_{arphi G}$	$arphi^\dagger arphi G^A_{\mu u} G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu u} e_r) \tau^I \varphi W^I_{\mu u}$	$Q^{(1)}_{arphi l}$	$(arphi^\dagger i \overleftrightarrow{D}_\mu arphi) (ar{l}_p \gamma^\mu l_r)$		$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$
$Q_{arphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu u} e_r) \varphi B_{\mu u}$	$Q^{(3)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	Q_{ll} $Q_{qq}^{(1)}$	$egin{aligned} & (ar{l}_p \gamma_\mu l_r) (ar{l}_s \gamma^\mu l_t) \ & (ar{q}_p \gamma_\mu q_r) (ar{q}_s \gamma^\mu q_t) \end{aligned}$	Q_{ee} Q_{uu}	$egin{aligned} & (ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t) \ & (ar{u}_p \gamma_\mu u_r) (ar{u}_s \gamma^\mu u_t) \end{aligned}$	Q_{le} Q_{lu}	$egin{aligned} & (ar{l}_p \gamma_\mu l_r) (ar{e}_s \gamma^\mu e_t) \ & (ar{l}_p \gamma_\mu l_r) (ar{u}_s \gamma^\mu u_t) \end{aligned}$
$Q_{arphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu u} T^A u_r) \widetilde{\varphi} G^A_{\mu u}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	$Q_{qq}^{(3)} Q_{lq}^{(1)}$	$\begin{array}{c} (\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t) \\ (\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t) \end{array}$	Q_{dd} Q_{eu}	$egin{aligned} & (ar{d}_p \gamma_\mu d_r) (ar{d}_s \gamma^\mu d_t) \ & (ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t) \end{aligned}$	Q_{ld} Q_{qe}	$egin{aligned} & (ar{l}_p \gamma_\mu l_r) (ar{d}_s \gamma^\mu d_t) \ & (ar{q}_p \gamma_\mu q_r) (ar{e}_s \gamma^\mu e_t) \end{aligned}$
$Q_{\omega \widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(ar{q}_p \sigma^{\mu u} u_r) au^I \widetilde{arphi} W^I_{\mu u}$	$Q^{(1)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed} $Q_{ud}^{(1)}$	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t) (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$ $Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$ $(\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t)$
$Q_{arphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu u} u_r) \widetilde{\varphi} B_{\mu u}$	$Q^{(3)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p} au^{I}\gamma^{\mu}q_{r})$			$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$ $Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$ $(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$
$Q_{\alpha\widetilde{P}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\omega u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-vio	lating	(1p+µ= 1)(-s+=)
	$\omega^{\dagger} \tau^{I} \omega W^{I} B^{\mu\nu}$		$(\bar{a},\sigma^{\mu\nu}d)\tau^{I}(\sigma W^{I})$		$(\omega^{\dagger}i\overset{\leftrightarrow}{D},\omega)(d,\gamma^{\mu}d)$	Q_{ledq} $Q_{quad}^{(1)}$	$egin{aligned} &(l_p^j e_r)(d_s q_t^j)\ &(ar q_p^j u_r)arepsilon_{jk}(ar q_s^k d_t) \end{aligned}$	Q_{duq} Q_{qqu}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[\left(d_p^lpha ight) \ arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[\left(q_p^{lpha j} ight) \ arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[\left(q_p^{lpha j} ight) \ arepsilon^{lphaeta\gamma}arepsilon_{jk} ight] ight]$	$(j)^T C u_r^{\beta}] [(q_s^{\gamma j})^T C l_t^k]$ $(j)^T C q_r^{\beta k}] [(u_r^{\gamma})^T C e_t]$	
$\varphi \varphi W B$	$\psi' \psi' \psi' \mu \nu D$		$(q_p \circ \omega_r) \circ \varphi \circ \psi_{\mu\nu}$	φφά	$(\varphi \ v D_{\mu} \varphi)(a_{p} \ u_{r})$	$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$		$\begin{bmatrix} (q_s^{\gamma m})^T C l_t^n \end{bmatrix}$
$Q_{arphi \widetilde{W}B}$	$\varphi' \tau' \varphi W^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(q_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{arphi u d}$	$i(\varphi' D_{\mu}\varphi)(u_p\gamma^{\mu}d_r)$	$Q_{lequ}^{(3)}$ $Q_{lequ}^{(3)}$	$(l_p^j e_r) \varepsilon_{jk} (\bar{q}_s^r u_t) (\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$	Q_{qqq} Q_{duu}	$\frac{\varepsilon^{\alpha\beta\gamma}(\tau^{*}\varepsilon)_{jk}(\tau^{1}\varepsilon)_{mn}}{\varepsilon^{\alpha\beta\gamma}\left[\left(d_{p}^{\alpha}\right)^{2}\right]}$	$\left[(q_p^{\alpha_f})^T T C u_r^{\beta} \right]$	$\begin{bmatrix} (q_s^{\gamma n})^T C e_t \end{bmatrix}$ $\begin{bmatrix} (u_s^{\gamma})^T C e_t \end{bmatrix}$

- Complete SM EFT at Dim-6 implemented in v2.2.8, in the Warsaw basis.
- Some Dim-8 operators are available (quartic weak-boson couplings).

- Complete SM EFT at Dim-6 implemented in v2.2.8, in the Warsaw basis.
- Some Dim-8 operators are available (quartic weak-boson couplings).

- Complete SM EFT at Dim-6 implemented in v2.2.8, in the Warsaw basis.
- Some Dim-8 operators are available (quartic weak-boson couplings).
- Automated interfaces to FeynRules and SARAH.

- Complete SM EFT at Dim-6 implemented in v2.2.8, in the Warsaw basis.
- Some Dim-8 operators are available (quartic weak-boson couplings).
- Automated interfaces to FeynRules and SARAH.
- UFO not yet supported but in progress. (at latest in summer.)

UFO examples

That are:

- publicly available
- validated
- ready for simulation

Multi-vector boson

• Dim-6 TGC: UFO and VBFNLO

• UFO model: EWdim6 https://feynrules.irmp.ucl.ac.be/wiki/EWdim6 [arXiv:1205.4231, Degrande, Greiner, Kilian, Mattelaer, Mebane, Stelzer, Willenbrock, CZ]

Multi-vector boson

• Dim-6 TGC: UFO and VBFNLO

• UFO model: EWdim6 https://feynrules.irmp.ucl.ac.be/wiki/EWdim6 [arXiv:1205.4231, Degrande, Greiner, Kilian, Mattelaer, Mebane, Stelzer, Willenbrock, CZ]

• Dim-8 QGC: UFO, Whizard, VBFNLO

https://feynrules.irmp.ucl.ac.be/wiki/AnomalousGaugeCoupling

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{O}_{S,0}, \mathcal{O}_{S,1}$	Х	Х	X						
$\mathcal{O}_{M,0}, \mathcal{O}_{M,1}, \mathcal{O}_{M,6}, \mathcal{O}_{M,7}$	X	Х	X	Х	Х	Х	X		
$\mathcal{O}_{M,2}$, $\mathcal{O}_{M,3}$, $\mathcal{O}_{M,4}$, $\mathcal{O}_{M,5}$		X	X	Х	Х	Х	X		
$\mathcal{O}_{T,0}$, $\mathcal{O}_{T,1}$, $\mathcal{O}_{T,2}$	X	Х	X	Х	Х	Х	Х	Х	Х
$\mathcal{O}_{T,5}$, $\mathcal{O}_{T,6}$, $\mathcal{O}_{T,7}$		X	X	Х	Х	Х	X	X	Х
$\mathcal{O}_{T,8}$, $\mathcal{O}_{T,9}$			X			Х	X	X	Х

[1309.7890, C. Degrande et al.]

https://feynrules.irmp.ucl.ac.be/wiki/TopEffTh

Top effective theory

Author

Céline Degrande

- University of Illinois at Urbana Champaign
- cdegrand@...

Description of the model & reference

The top effective theory model contains all the dimension-six operators affecting top pair production, single top pair production and top decay by interfering with the SM amplitudes.

⇒ Phys.Rev. D83 (2011) 034006: S. Willenbrock, C. Zhang, Effective-Field-Theory Approach to Top-Quark Production and Decay.

https://feynrules.irmp.ucl.ac.be/wiki/TopEffTh

Top effective theory

Author

Céline Degrande

- University of Illinois at Urbana Champaign
- cdegrand@...

Description of the model & referenc

The top effective theory model cor production, single top pair product

⇒ Phys.Rev. D83 (2011) 034006: Top-Quark Production and Decay.

operator	process					
$O^{(3)}_{\phi q} = i(\phi^+ au^I D_\mu \phi) (ar q \gamma^\mu au^I q)$	top decay, single top					
$O_{tW} = (\bar{q}\sigma^{\mu\nu}\tau^I t)\tilde{\phi}W^I_{\mu\nu}$ (with real coefficient)	top decay, single top					
$O^{(1,3)}_{qq} = (ar q^i \gamma_\mu au^I q^j) (ar q \gamma^\mu au^I q)$	single top					
$O_{tG} = (\bar{q}\sigma^{\mu\nu}\lambda^A t)\tilde{\phi}G^A_{\mu\nu}$ (with real coefficient)	single top, $q\bar{q}, gg \to t\bar{t}$					
$O_G = f_{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$gg ightarrow t ar{t}$					
$O_{\phi G} = \frac{1}{2} (\phi^+ \phi) G^A_{\mu\nu} G^{A\mu\nu}$	$gg ightarrow tar{t}$					
7 four-quark operators	$q \bar{q} ightarrow t ar{t}$					
$O_{tW} = (\bar{q}\sigma^{\mu\nu}\tau^I t)\tilde{\phi}W^I_{\mu\nu}$ (with imaginary coefficient) top decay, single top					
$O_{tG} = (\bar{q}\sigma^{\mu\nu}\lambda^A t)\tilde{\phi}G^A_{\mu\nu}$ (with imaginary coefficient)	$(i) \text{single top, } q\bar{q}, gg \to t\bar{t}$					

[1512.07542 Perello Rosello, Vos]

	SM prediction	Measurement
Tevatron, 1.96 TeV $p\bar{p}$, CDF+D0, x-section	$7.16 \pm 0.26 \text{ pb} [24]$	$7.60 \pm 0.41 \text{ pb} [25]$
Tevatron, 1.96 1.96 TeV $p\bar{p}$, CDF+D0, A_{FB}	$9.5 \pm 0.7\% [9]$	$13\pm2.3\%[4,5]$
LHC, 8 TeV pp, CMS+ATLAS inclusive σ	$245.80 \pm 10.56 \text{ pb} [24]$	241.50 ± 8.54 pb [26]
ATLAS 8 TeV pp , inclusive A_C	$1.11 \pm 0.04\% \; [27]$	$0.9\pm 0.5\%~[28]$
CMS 8 TeV pp , inclusive A_C	$1.11 \pm 0.04\% \; [27]$	$0.3 \pm 0.4\% \; [15]$
ATLAS 8 TeV pp , differential A_C $(m_{t\bar{t}} > 0.75 \text{ TeV})$	$1.60 \pm 0.04\%$ [29]	$4.2 \pm 3.2\%$ [30]

Table 2 Datasets used in the fit. The Tevatron A_{FB} measurement corresponds to a naive approximation between D0 and CDF experiments [31]. A combination of the ATLAS and CMS measurements of the inclusive asymmetry at 8 TeV is not yet available, so both measurement are kept as independent constraints.

Higgs Eff. Lagrangian

feynrules.irmp.ucl.ac.be/wiki/HEL

Higgs effective Lagrangian 1

Authors

Adam Alloul

- Groupe de Recherche en Physique des Hautes Energies Universite de Haute Alsace
- adam.alloul@...

Benjamin Fuks

- CERN / Institut Pluridisciplinaire Hubert Curien / Universite de Strasbourg
- benjamin.fuks@...

Veronica Sanz

- University of Sussex
- v.sanz@...

Description of the model & references

The model we have implemented is based on the description given ⇒ here and on the parametrization adopted ⇒ here. The Lagrangian consists of an extension of the SM Lagrangian with terms of dimension up to six comprising

- the set of CP-conserving operators describing the strongly interacting Higgs Lagrangian declared as LSILH in the model file;
- the set of operators describing the interactions of a pair of Higgs fields with a pair of leptons or quarks declared as LF1 in the model file;
- the set of operators describing the interactions of a single Higgs field with a pair of leptons or quarks and a gauge boson declared as LF2 in the model file;
- the set of operators affecting the gauge sector and possibly modifying the gauge boson self-energies and self-interactions. The variable corresponding to this piece of the Lagrangian is LBosons;
- the set of CP-violating operators declared in the variable LCP.

[arXiv:1310.5150, Alloul, Fuks, Sanz]

- 33 CP-even + 6 CP-odd ullet
- 34 operators relevant for Higgs lacksquare
- Flavor-universal lacksquare
- SILH: hep-ph/0703164, Guildice et al. ullet
- F1: W/Z to ffbar (V/A) •
- F2: EW/chromo-dipoles lacksquare
- G: Gauge-boson self interaction \bullet

$$\begin{split} \Delta \mathcal{L}_{F_{1}} &= \frac{i\bar{c}_{Hq}}{v^{2}} \left(\bar{q}_{L} \gamma^{\mu} q_{L} \right) \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) + \frac{i\bar{c}_{Hq}}{v^{2}} \left(\bar{q}_{L} \gamma^{\mu} \sigma^{i} q_{L} \right) \left(H^{\dagger} \sigma^{i} \overleftrightarrow{D}_{\mu} H \right) \\ &+ \frac{i\bar{c}_{Hu}}{v^{2}} \left(\bar{u}_{R} \gamma^{\mu} u_{R} \right) \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) + \frac{i\bar{c}_{Hd}}{v^{2}} \left(\bar{d}_{R} \gamma^{\mu} d_{R} \right) \left(H^{\dagger} \sigma^{i} \overleftrightarrow{D}_{\mu} H \right) \\ &+ \frac{i\bar{c}_{Hu}}{v^{2}} \left(\bar{u}_{R} \gamma^{\mu} u_{R} \right) \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) + \frac{i\bar{c}_{Hd}}{v^{2}} \left(\bar{d}_{R} \gamma^{\mu} d_{R} \right) \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) \\ &+ \left(\frac{i\bar{c}_{Hud}}{v^{2}} \left(\bar{u}_{R} \gamma^{\mu} d_{R} \right) \left(H^{c} \dagger \overleftrightarrow{D}_{\mu} H \right) + h.c. \right) \\ &+ \left(\frac{i\bar{c}_{Hud}}{v^{2}} \left(\bar{u}_{R} \gamma^{\mu} d_{R} \right) \left(H^{c} \dagger \overleftrightarrow{D}_{\mu} H \right) + h.c. \right) \\ &+ \frac{i\bar{c}_{HL}}{v^{2}} \left(\bar{L}_{L} \gamma^{\mu} L_{L} \right) \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) + \frac{i\bar{c}_{HL}}{v^{2}} \left(\bar{L}_{L} \gamma^{\mu} \sigma^{i} L_{L} \right) \left(H^{\dagger} \sigma^{i} \overleftrightarrow{D}_{\mu} H \right) \\ &+ \frac{i\bar{c}_{RH}}{v^{2}} \left(\bar{l}_{R} \gamma^{\mu} l_{R} \right) \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) + \frac{i\bar{c}_{HL}}{v^{2}} \left(\bar{L}_{L} \gamma^{\mu} \sigma^{i} L_{L} \right) \left(H^{\dagger} \sigma^{i} \overleftrightarrow{D}_{\mu} H \right) \\ &+ \frac{i\bar{c}_{RH}}{v^{2}} \left(\bar{l}_{R} \gamma^{\mu} l_{R} \right) \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) + \frac{i\bar{c}_{HL}}{v^{2}} \left(\bar{L}_{L} \gamma^{\mu} \sigma^{i} L_{L} \right) \left(H^{\dagger} \sigma^{i} \overleftrightarrow{D}_{\mu} H \right) \\ &+ \frac{i\bar{c}_{RH}}{v^{2}} \left(\bar{l}_{R} \gamma^{\mu} l_{R} \right) \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) , \end{aligned}$$

(4-fermions are not included)

 \overline{c}

$$\begin{split} \Delta \mathcal{L}_{SILH} &= \frac{\bar{c}_H}{2v^2} \,\partial^{\mu} \big(H^{\dagger} H \big) \,\partial_{\mu} \big(H^{\dagger} H \big) + \frac{\bar{c}_T}{2v^2} \, \Big(H^{\dagger} \overleftrightarrow{D^{\mu}} H \Big) \Big(H^{\dagger} \overleftrightarrow{D}_{\mu} H \Big) - \frac{\bar{c}_6 \,\lambda}{v^2} \, \big(H^{\dagger} H \big)^3 \\ &+ \Big(\Big(\frac{\bar{c}_u}{v^2} \, y_u \, H^{\dagger} H \, \bar{q}_L H^c u_R + \frac{\bar{c}_d}{v^2} \, y_d \, H^{\dagger} H \, \bar{q}_L H d_R + \frac{\bar{c}_l}{v^2} \, y_l \, H^{\dagger} H \, \bar{L}_L H l_R \Big) + h.c. \Big) \\ &+ \frac{i \bar{c}_W \, g}{2m_W^2} \, \Big(H^{\dagger} \sigma^i \overleftrightarrow{D^{\mu}} H \Big) \, \big(D^{\nu} W_{\mu\nu} \big)^i + \frac{i \bar{c}_B \, g'}{2m_W^2} \, \Big(H^{\dagger} \overleftrightarrow{D^{\mu}} H \Big) \, \big(\partial^{\nu} B_{\mu\nu} \big) \\ &+ \frac{i \bar{c}_{HW} \, g}{m_W^2} \, \big(D^{\mu} H \big)^{\dagger} \sigma^i (D^{\nu} H) W_{\mu\nu}^i + \frac{i \bar{c}_{HB} \, g'}{m_W^2} \, \big(D^{\mu} H \big)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ &+ \frac{\bar{c}_{\gamma} \, g'^2}{m_W^2} \, H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{\bar{c}_g \, g_S^2}{m_W^2} \, H^{\dagger} H G^a_{\mu\nu} G^{a\mu\nu} \,, \end{split}$$

HEL in Higgs Fits

[1404.3667,1410.7703 Ellis, Sanz, You]

Higgs, TGC, combination

see also [1511.0517 Englert, Kogler, Schulz, Spannowsky]

EW sector probed by PEWM+TGC+Higgs: 8+3+8

assuming flavor symmetry

$$\begin{array}{l} \mathcal{O}_{W} = \frac{ig}{2} \left(H^{\dagger} \sigma^{a} \overset{\leftrightarrow}{D^{\mu}} H \right) D^{\nu} W_{\mu\nu}^{a} \\ \overset{(+)}{(+)} \mathcal{O}_{B} = \frac{ig'}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D^{\mu}} H \right) \partial^{\nu} B_{\mu\nu} \\ \mathcal{O}_{T} = \frac{1}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H \right)^{2} \\ \mathcal{O}_{LL}^{(3)\,l} = (\bar{L}_{L} \sigma^{a} \gamma^{\mu} L_{L}) (\bar{L}_{L} \sigma^{a} \gamma_{\mu} L_{L}) \\ \mathcal{O}_{LL}^{e} = (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H) (\bar{e}_{R} \gamma^{\mu} e_{R}) \\ \mathcal{O}_{R}^{e} = (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H) (\bar{e}_{R} \gamma^{\mu} u_{R}) \\ \mathcal{O}_{R}^{d} = (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H) (\bar{d}_{R} \gamma^{\mu} d_{R}) \\ \mathcal{O}_{L}^{(3)\,q} = (iH^{\dagger} \sigma^{a} \overset{\leftrightarrow}{D_{\mu}} H) (\bar{Q}_{L} \sigma^{a} \gamma^{\mu} Q_{L}) \\ \mathcal{O}_{L}^{q} = (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H) (\bar{Q}_{L} \gamma^{\mu} Q_{L}) \end{array}$$

1. PEWM

Mainly from Z-pole: only 8 d.o.f (10 would appear in BW/Warsaw) [A. Falkowski and F. Riva 2014] 2. TGC (and Higgs)

$$\mathcal{O}_{W} = \frac{ig}{2} \left(H^{\dagger} \sigma^{a} \overset{\leftrightarrow}{D^{\mu}} H \right) D^{\nu} W^{a}_{\mu\nu}$$

$$\mathcal{O}_{B} = \frac{ig'}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D^{\mu}} H \right) \partial^{\nu} B_{\mu\nu}$$

$$\mathcal{O}_{HB} = ig' (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu}$$

$$\mathcal{O}_{3W} = \frac{1}{3!} g \epsilon_{abc} W^{a \nu}_{\mu} W^{b}_{\nu\rho} W^{c \rho\mu}$$

W-pair production: g_1^Z , κ_γ , λ_Z

3. New from Higgs

$$\begin{split} \mathcal{O}_{H} &= [\partial_{\mu}(H^{\dagger}H)]^{2} \\ \mathcal{O}_{BB} &= \frac{g'^{2}}{4} |H|^{2} B_{\mu\nu} B^{\mu\nu} \\ \mathcal{O}_{WW} &= \frac{g^{2}}{4} |H|^{2} W^{a}_{\mu\nu} W^{a\mu\nu} \\ \mathcal{O}_{GG} &= \frac{g^{2}_{s}}{4} |H|^{2} G^{A}_{\mu\nu} G^{A\mu\nu} \\ \mathcal{O}_{gu} &= y_{u} |H|^{2} \bar{Q}_{L} \tilde{H} u_{R} \\ \mathcal{O}_{y_{u}} &= y_{d} |H|^{2} \bar{Q}_{L} H d_{R} \\ \mathcal{O}_{y_{e}} &= y_{e} |H|^{2} \bar{L}_{L} H e_{R} \\ \mathcal{O}_{6} &= \lambda |H|^{6} \end{split}$$

HEL in Top Fits

[1404.2581, Tonero and Rosenfeld]

Top dipole fits

LHC observables	Experimental value
$t\bar{t}V$ production	$0.43^{+0.17}_{-0.15} \text{ pb} [16]$
Single top t-channel	$67.2 \pm 6.1 \text{ pb} [19]$
tW production	$23.4 \pm 5.4 \text{ pb} [21]$
$t\bar{t}$ production	$237.7 \pm 1.7(\text{stat}) \pm 7.4(\text{syst}) \pm$
	7.4 (lumi) ± 4.0 (energy) pb [23]
W helicity fractions	$F_0 = 0.626 \pm 0.034$ (stat.) ± 0.048 (syst.)
	$F_L = 0.359 \pm 0.021 \text{ (stat.) } \pm 0.028 \text{ (syst.)}$
	$F_R = 0.015 \pm 0.034 \; [25]$

0.024

...and many more

- Check the FeynRules model database https://feynrules.irmp.ucl.ac.be/wiki/ModelDatabaseMainPage
- E.g.
 - nTGC: dim-8 operators affecting neutral triple gauge boson couplings
 - **Higgs Characterisation**: [F. Demartin, K. Mawatari] spin/parity characterisation of the 125 GeV scalarresonance.
 - Higgs basis
 - There are also some top- and Higgs-FCNC models
- Also check

Rosetta: an operator basis translator for SM EFT [1508.05895, Falkowski et al.] (Warsaw, SILH, Higgs basis, ...)

[C. Degrande]

[B. Fuks, K. Mawatari]

Going to NLO in QCD with EFT

- With MADGRAPH5_AMC@NLO, all we need for EFT @ NLO is the Dim-6 UV and R2 counterterms.
 - UV CT characterize the RG running & mixing of operators.
 - R2 occurs due to numerical techniques only evaluate 4-dimensional part of loop amplitude (while we need D-dimensional)
- NLOCT is being developed to incorporate both at Dim-6, in an automatic way.
- Alternatively, there are case studies, not fully automated. For example, can take UV CTs from [1312.2014 Alonso et al.]
- Several NLO UFOs have been made available.

https://feynrules.irmp.ucl.ac.be/wiki/NLOModels

- Higgs Characterisation
 [P. Artoisenet et al. 2013] [F. Demartin et al. 2014] [F. Demartin et al. 2015]
- HEL @ NLO in progress (Degrande, Fuks, Mawatari, Mimasu, Sanz)
- **Top EFTs** (Bylund, Degrande, Franzosi, Maltoni, Tsinikos, Vryonidou, CZ)
- Color Neutral ops trivial to add (TGC, DM with vectors, etc.)

Higgs Characterisation

https://feynrules.irmp.ucl.ac.be/wiki/HiggsCharacterisation

[P. Artoisenet et al. 2013] [F. Demartin et al. 2014] [F. Demartin et al. 2015]

$$\mathcal{L}_{0}^{f} = -\sum_{f=t.b.\tau} \bar{\psi}_{f} (c_{\alpha} \kappa_{Hff} g_{Hff} + i s_{\alpha} \kappa_{Aff} g_{Aff} \gamma_{5}) \psi_{f} X_{0}$$

$$\mathcal{L}_{0}^{V} = \left\{ c_{\alpha} \kappa_{SM} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] \right. \\ \left. - \frac{1}{4} \left[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \widetilde{A}^{\mu\nu} \right] \right. \\ \left. - \frac{1}{2} \left[c_{\alpha} \kappa_{HZ\gamma} g_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} Z_{\mu\nu} \widetilde{A}^{\mu\nu} \right] \right. \\ \left. - \frac{1}{4} \left[c_{\alpha} \kappa_{Hgg} g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{Agg} g_{Agg} G_{\mu\nu}^{a} \widetilde{G}^{a,\mu\nu} \right] \right. \\ \left. - \frac{1}{4} \frac{1}{4} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right] \right. \\ \left. - \frac{1}{2} \frac{1}{4} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right] \right. \\ \left. - \frac{1}{2} \frac{1}{4} \left[c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \right. \\ \left. - \frac{1}{4} \frac{1}{4} \left[c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \right] \right\} X_{0}$$

parameter	description
$\Lambda \; [{ m GeV}]$	cutoff scale
$c_{\alpha} (\equiv \cos \theta)$	α mixing between 0 ⁺ and 0 ⁻
κ_i	dimensionless coupling parameter

Higgs Characterisation

https://feynrules.irmp.ucl.ac.be/wiki/HiggsCharacterisation

[P. Artoisenet et al. 2013] [F. Demartin et al. 2014] [F. Demartin et al. 2015]

 $\langle \mathbf{a} \rangle$

(1)

Flav conse

Flavor	Process	O_{tG}	O_{tB}	O_{tW}	$O^{(3)}_{arphi Q}$	$O^{(1)}_{arphi Q}$	$O_{arphi t}$	O_{tarphi}	$O_{ m 4f}$	O_G	$O_{arphi G}$
1 10/01-	$t \to bW \to bl^+\nu$	Х		Х	Х				Х		
conserving	pp ightarrow t ilde q	Х		Х	Х				Х		
	pp ightarrow tW	X		Х	X				Х	Х	Х
	$pp ightarrow tar{t}$	Х						Х	Х	Х	Х
	$pp ightarrow t \bar{t} \gamma$	X	X	X				Х	Х	Х	Х
	$pp ightarrow t\gamma j$	X	X	X					X		
	$pp \rightarrow ttZ$	X	X	X	X	X	X	Х	X	Х	Х
	$pp \rightarrow tZj$	X	Х	X	Х	Х	Х	v	X	37	37
	$pp \rightarrow tth$	X						X	X	Х	X
	$pp \rightarrow tjn$				\mathbf{v}	v	\mathbf{v}	A v	λ		\mathbf{X}
	$gg \rightarrow H, HZ$	Λ			Λ	Λ	Λ	Λ			Λ
Flavor-	Process		$O_{\phi q}^{(3)}$	$O_{\phi q}^{(1)}$	$O_{\phi u}^{(1)}$	O_{uW}	O_{uB}	O_{u0}	$_{G} O_{i}$	$_{\mu\phi}$ C	$_{ m 4f}$
changing	$t ightarrow q Z^*, \gamma^*$ –	$\rightarrow q l^+ l^-$	Х	X	Х	Х	Х	Х		2	X
(noutral)	$t ightarrow q \gamma$					Х	Х	Х			
(neutrar)	t ightarrow qH							Х	Х	ζ.	
	$pp \rightarrow t$							Х		2	X
	$pp \rightarrow tZ$		X	X	Х	X	Х	Х		-	X
	$pp ightarrow t\gamma$					Х	Х	X		-	X
	$pp \rightarrow tH$							Х	X		X

We aim to provide: (in particular for experimentalists)

- A framework for testing **top-quark couplings**, with **QCD NLO** accuracy.
- i.e. all TH inputs for an NLO global fit will be **automated**.

Flavor-
conserving

Process	3	O_{tG}	O_{tB}	O_{tW}	$O^{(3)}_{arphi Q}$	$O^{(1)}_{arphi Q}$	$O_{arphi t}$	O_{tarphi}	$O_{ m 4f}$	O_G	$O_{arphi G}$
$t \rightarrow bW$	$\nu \rightarrow b l^+ \nu$	Х		Х	Х				Х		
$pp ightarrow t \dot{q}$	\tilde{q}	Х		Х	X				Х		
$pp \rightarrow t$	W	Х		Х	Х				Х	Х	Х
$pp ightarrow t\bar{t}$	Ļ	Х						Х	Х	Х	Х
$pp ightarrow t\bar{t}$	$ar{t}\gamma$	Х	Х	Х				Х	Х	Х	Х
pp ightarrow tr	γj	X	Х	Х					Х		
$pp ightarrow t\bar{t}$	\overline{z}	X	Х	Х	Х	Х	Х	Х	Х	Х	Х
$pp \rightarrow t L$	Zj	X	Х	Х	Х	X	Х		Х		
$pp ightarrow t\bar{t}$	Ē h	Х						Х	Х	Х	Х
$pp \rightarrow t_{J}$	$\overline{j}h$	Х						Х	Х		Х
$gg \to H$	H, HZ	Х			Х	Х	Х	Х			Х
Pro	cess		$O_{\phi q}^{(3)}$	$O_{\phi q}^{(1)}$	$O_{\phi u}^{(1)}$	O_{uW}	O_{uB}	O_{u0}	$G O_{i}$	uφ C	$_{4f}$
$t \rightarrow$	qZ^*, γ^* –	$\rightarrow q l^+ l^-$	Х	Х	Х	Х	Х	Х			X
$t \rightarrow$	$q\gamma$	-				X	X	Х			
t ightarrow	qH							Х	Х	X	
pp -	$\rightarrow t$							Х			Х
pp -	$\rightarrow tZ$		Х	Х	Х	Х	Х	Х			Х
pp -	$ ightarrow t\gamma$					Х	Х	Х			Х
pp -	$\rightarrow tH$							Х	Х	K I	Х

_

Flavorchanging (neutral) • Decays and FCNC direct t production is available analytically. [1404.1264 CZ], [1305.7386 F. Maltoni, CZ], [hep-ph/0508016 J.J.Liu et al.]

Flavor-	Process	O_{tG}	O_{tB}	O_{tW}	$O^{(3)}_{arphi Q}$	$O^{(1)}_{arphi Q}$	$O_{arphi t}$	O_{tarphi}	$O_{4\mathrm{f}}$	O_G	$O_{arphi G}$
1 10/01-	$t \rightarrow bW \rightarrow bl^+ \nu$	Х		Х	Х				Х		
conserving	$pp ightarrow t ilde{q}$	Х		Х	Х				Х		
	pp ightarrow tW	Х		Х	X				Х	Х	Х
	$pp ightarrow tar{t}$	Х						Х	Х	Х	Х
	$pp ightarrow t ar{t} \gamma$	Х	Х	Х				Х	Х	Х	Х
	$pp ightarrow t \gamma j$	X	X	X					X		
	$pp \rightarrow ttZ$	X	X	X	X	X	X	Х	X	Х	Х
	$pp \rightarrow tZj$	X	Х	Х	Х	Х	Х	37	X	37	37
	$pp \rightarrow tth$	X						X	X	Х	X
	$pp \rightarrow tjh$	X			v	V	v	X	Х		X
	$gg \rightarrow H, HZ$	Λ			Λ	Λ	Λ	Λ			Λ
Flavor-	Process		$O_{\phi q}^{(3)}$	$O_{\phi q}^{(1)}$	$O_{\phi u}^{(1)}$	O_{uW}	O_{uB}	O_u	$_{G}$ O_{i}	$_{u\phi}$ O	$_{ m 4f}$
changing	$t ightarrow q Z^*, \gamma^* -$	$\rightarrow q l^+ l^-$	X	X	X	X	Х	Х			X
(noutral)	$t ightarrow q \gamma$					Х	Х	Х	•		
(nounar)	$t \to q H$							Х	Х	X	
	$pp \rightarrow t$							Х]	X
	$pp \rightarrow tZ$		X	Х	Х	Х	Х	Х]	X
	$pp ightarrow t\gamma$					Х	Х	X			X
	$pp \rightarrow tH$							Х	. X		X

- Decays and FCNC direct t production is available analytically. [1404.1264 CZ], [1305.7386 F. Maltoni, CZ], [hep-ph/0508016 J.J.Liu et al.]
- FCNC associated productions have been implemented. [1412.5594 Degrande, Maltoni, Wang, CZ] <u>http://feynrules.irmp.ucl.ac.be/wiki/TopFCNC</u>

Flavor-	Process	O_{tG}	O_{tB}	O_{tW}	$O^{(3)}_{arphi Q}$	$O^{(1)}_{arphi Q}$	$O_{\varphi t}$	O_{tarphi}	$O_{4\mathrm{f}}$	O_G	$O_{arphi G}$
1 10/01-	$t \rightarrow bW \rightarrow bl^+ \nu$	X		X	X				Х		
conserving	pp ightarrow t ilde q	X		Х	Х				Х		
U	pp ightarrow tW	Х		Х	Х				Х	Х	Х
	$pp ightarrow t ar{t}$	X						Х	Х	Х	Х
	$pp ightarrow t ar{t} \gamma$	X	Х	Х				Х	Х	Х	Х
	$pp ightarrow t\gamma j$	Х	Х	Х					Х		
	$pp ightarrow t ar{t} Z$	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	$pp \rightarrow tZj$	X	X	X	X	Х	Х		Х		
	$pp \rightarrow tth$	X						X	X	Х	X
	$pp \rightarrow tjh$	X						X	Х		X
	$gg \to H, HZ$	X			Х	Х	Х	Х			Х
Flavor-	Process		$O_{\phi q}^{(3)}$	$O_{\phi q}^{(1)}$	$O_{\phi u}^{(1)}$	O_{uW}	O_{uB}	O_u	$_{G} O_{v}$	$_{\mu\phi}$ O	$_{ m 4f}$
changing	$t ightarrow q Z^*, \gamma^* -$	$\rightarrow q l^+ l^-$	X	X	Х	X	Х	Х			X
(noutral)	$t ightarrow q \gamma$					Х	Х	Х			
(neutrar)	$t \rightarrow qH$							Х	X	X	
	$pp \rightarrow t$							Х			X
	pp ightarrow tZ		X	X	Х	Х	Х	Х			X
	$pp ightarrow t\gamma$					Х	Х	Х			X
	pp ightarrow tH							X	. Х		X

Top-FCNC operators

available at

http://feynrules.irmp.ucl.ac.be/wiki/TopFCNC

Description of the model & reference

The top effective theory model contains the dimension-six operators affecting top flavor changing processes. The UFO model can be used for computation at the NLO in QCD.

⇒ Phys.Rev. D91 (2015) 034024: C. Degrande, F. Maltoni, J. Wang, C. Zhang, Automatic computations at next-to-leading order in QCD for top-quark flavorchanging neutral processes

⇒ Phys.Rev. D91 (2015) 074017: G. Durieux, F. Maltoni, C. Zhang, Global approach to top-quark flavor-changing interactions

Model files

The UFO (TopFCNC.tar.gz) and the FeynRules model (TopEFTFCNC.fr) are available

- Decays and FCNC direct t production is available analytically. [1404.1264 CZ], [1305.7386 F. Maltoni, CZ], [hep-ph/0508016 J.J.Liu et al.]
- FCNC associated productions have been implemented. [1412.5594 Degrande, Maltoni, Wang, CZ] <u>http://feynrules.irmp.ucl.ac.be/wiki/TopFCNC</u>

Flavor-	Process	O_{tG}	O_{tB}	O_{tW}	$O^{(3)}_{arphi Q}$	$O^{(1)}_{arphi Q}$	$O_{\varphi t}$	O_{tarphi}	$O_{4\mathrm{f}}$	O_G	$O_{arphi G}$
1 10/01-	$t \rightarrow bW \rightarrow bl^+ \nu$	X		X	X				Х		
conserving	$pp ightarrow t ilde{q}$	X		Х	Х				Х		
U	pp ightarrow tW	Х		Х	Х				Х	Х	Х
	$pp ightarrow t ar{t}$	X						Х	Х	Х	Х
	$pp ightarrow t ar{t} \gamma$	X	X	Х				Х	Х	Х	Х
	$pp ightarrow t\gamma j$	Х	Х	Х					Х		
	$pp ightarrow t ar{t} Z$	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	$pp \rightarrow tZj$	X	X	X	X	Х	Х		Х		
	$pp \rightarrow tth$	X						X	X	Х	X
	$pp \rightarrow tjh$	X						X	Х		X
	$gg \to H, HZ$	X			Х	Х	Х	Х			Х
Flavor-	Process		$O_{\phi q}^{(3)}$	$O_{\phi q}^{(1)}$	$O_{\phi u}^{(1)}$	O_{uW}	O_{uB}	O_u	$_{G} O_{v}$	$_{\mu\phi}$ O	$_{ m 4f}$
changing	$t ightarrow q Z^*, \gamma^* -$	$\rightarrow q l^+ l^-$	X	X	Х	X	Х	Х			X
(noutral)	$t ightarrow q \gamma$					Х	Х	Х			
(neutrar)	$t \rightarrow qH$							Х	X	X	
	$pp \rightarrow t$							Х			X
	pp ightarrow tZ		X	X	Х	Х	Х	Х			X
	$pp ightarrow t\gamma$					Х	Х	Х			X
	pp ightarrow tH							X	. Х		X

- Decays and FCNC direct t production is available analytically. [1404.1264 CZ], [1305.7386 F. Maltoni, CZ], [hep-ph/0508016 J.J.Liu et al.]
- FCNC associated productions have been implemented. [1412.5594 Degrande, Maltoni, Wang, CZ] <u>http://feynrules.irmp.ucl.ac.be/wiki/TopFCNC</u>

Flavor-	Process	O_{tG}	O_{tB}	O_{tW}	$O^{(3)}_{arphi Q}$	$O^{(1)}_{arphi Q}$	$O_{\varphi t}$	O_{tarphi}	$O_{4\mathrm{f}}$	O_G	$O_{arphi G}$
	$t \to bW \to bl^+\nu$	X		X	X				Х		
conserving	pp ightarrow t ilde q	Х		Х	Х				Х		
C	pp ightarrow tW	X		Х	Х				Х	Х	Х
	$pp ightarrow tar{t}$	X						Х	Х	Х	Х
	$pp ightarrow t ar{t} \gamma$	X	Х	Х				Х	Х	Х	Х
	$pp ightarrow t \gamma j$	Х	Х	Х					Х		
	$pp \rightarrow t\bar{t}Z$	X	X	X	Х	Х	Х	Х	Х	Х	Х
	$pp \rightarrow tZj$	X	X	Х	X	Х	Х		X		
	$pp \rightarrow tth$	X						X	X	Х	X
	$pp \rightarrow tjh$	X						X	Х		X
	$gg \to H, HZ$	Х			X	Х	Х	Х			Х
Flavor-	Process		$O_{\phi q}^{(3)}$	$O_{\phi q}^{(1)}$	$O_{\phi u}^{(1)}$	O_{uW}	O_{uB}	O_u	$_{G}$ O_{1}	$_{u\phi}$ C	94f
changing	$t o q Z^*, \gamma^*$ –	$\rightarrow q l^+ l^-$	X	X	X	Х	Х	Х			X
(noutral)	$t ightarrow q \gamma$					Х	Х	Х	•		
(neutrar)	t ightarrow qH							Х	. X	Χ	
	$pp \rightarrow t$							Х]	X
	$pp \rightarrow tZ$		X	X	X	X	Х	Х			X
	$pp ightarrow t\gamma$					X	Х	X			X
	$pp \rightarrow tH$							X	. Х		X

• First automation in flavor-conserving case: ttbar with chromo-dipole [1503.08841 D.B. Franzosi, CZ]

- Decays and FCNC direct t production is available analytically. [1404.1264 CZ], [1305.7386 F. Maltoni, CZ], [hep-ph/0508016 J.J.Liu et al.]
- FCNC associated productions have been implemented. [1412.5594 Degrande, Maltoni, Wang, CZ] <u>http://feynrules.irmp.ucl.ac.be/wiki/TopFCNC</u>

Flavor- conserving	Process	O_{tG}	O_{tB}	O_{tW}	$O^{(3)}_{arphi Q}$	$O^{(1)}_{arphi Q}$	$O_{arphi t}$	$O_{t \varphi}$	$O_{4\mathrm{f}}$	O_G	$O_{arphi G}$
	$t \to bW \to bl^+\nu$	Х		Х	Х				X		
	pp ightarrow t ilde q	X		Х	Х				Χ		
_	pp ightarrow tW	X		Х	X				Х	Х	Х
	$pp ightarrow tar{t}$	X						Х	Х	Х	Х
	$pp ightarrow t ar{t} \gamma$	X	Х	Х				Х	Х	Х	Х
	$pp ightarrow t \gamma j$	X	X	X					X		
	$pp \rightarrow ttZ$	X	X	X	X	X	X	Х	X	Х	Х
	$pp \rightarrow tZj$	X	Х	Х	Х	Х	Х	37	X		
	$pp \rightarrow tth$	X						X	X	Х	X
	$pp \rightarrow tjh$	X			v	V	v	X	Х		X
	$gg \rightarrow H, HZ$	A			Χ	Χ	Χ	Χ			X
Flavor-	Process		$O_{\phi q}^{(3)}$	$O_{\phi q}^{(1)}$	$O_{\phi u}^{(1)}$	O_{uW}	O_{uE}	O_u	$_{G}$ O_{v}	$\mu\phi$ O	$_{ m 4f}$
changing	$t ightarrow q Z^*, \gamma^* -$	$\rightarrow q l^+ l^-$	X	Х	Х	Х	Х	Х			X
(noutral)	$t ightarrow q \gamma$					Х	Х	Х			
(neutrar)	$t \rightarrow qH$							Х	Х	X	
	pp ightarrow t							Х			X
	pp ightarrow tZ		X	X	Х	X	Х	Х			X
	$pp ightarrow t\gamma$					Х	Х	X			X
	$pp \rightarrow tH$							Х	X		X

- First automation in flavor-conserving case: ttbar with chromo-dipole [1503.08841 D.B. Franzosi, CZ]
- Complete top-EW operators: almost done [Bylund, Maltoni, Tsinikos, Vryonidou, CZ]

Top-EW operators

cf. [1404.1005, 1501.0593 Rontsch and Schulze]

ttbar

single top $t = t^{t}$

- Decays and FCNC direct t production is available analytically. [1404.1264 CZ], [1305.7386 F. Maltoni, CZ], [hep-ph/0508016 J.J.Liu et al.]
- FCNC associated productions have been implemented. [1412.5594 Degrande, Maltoni, Wang, CZ] <u>http://feynrules.irmp.ucl.ac.be/wiki/TopFCNC</u>

Flavor- conserving	Process	O_{tG}	O_{tB}	O_{tW}	$O^{(3)}_{arphi Q}$	$O^{(1)}_{arphi Q}$	$O_{arphi t}$	$O_{t\varphi}$	$O_{4\mathrm{f}}$	O_G	$O_{arphi G}$
	$t \to bW \to bl^+\nu$	Х		Х	Х				X		
	pp ightarrow t ilde q	X		Х	Х				Χ		
_	pp ightarrow tW	X		Х	X				Х	Х	Х
	$pp ightarrow tar{t}$	X						Х	Х	Х	Х
	$pp ightarrow t ar{t} \gamma$	X	Х	Х				Х	Х	Х	Х
	$pp ightarrow t \gamma j$	X	X	X					X		
	$pp \rightarrow ttZ$	X	X	X	X	X	X	Х	X	Х	Х
	$pp \rightarrow tZj$	X	Х	Х	Х	Х	Х	37	X		
	$pp \rightarrow tth$	X						X	X	Х	X
	$pp \rightarrow tjh$	X			v	V	v	X	Х		X
	$gg \rightarrow H, HZ$	A			Χ	Χ	Χ	Χ			X
Flavor-	Process		$O_{\phi q}^{(3)}$	$O_{\phi q}^{(1)}$	$O_{\phi u}^{(1)}$	O_{uW}	O_{uE}	O_u	$_{G}$ O_{v}	$\mu\phi$ O	$_{ m 4f}$
changing	$t ightarrow q Z^*, \gamma^* -$	$\rightarrow q l^+ l^-$	X	Х	Х	Х	Х	Х			X
(noutral)	$t ightarrow q \gamma$					Х	Х	Х			
(neutrar)	$t \rightarrow qH$							Х	Х	X	
	pp ightarrow t							Х			X
	pp ightarrow tZ		X	X	Х	X	Х	Х			X
	$pp ightarrow t\gamma$					Х	Х	X			X
	$pp \rightarrow tH$							Х	X		X

- First automation in flavor-conserving case: ttbar with chromo-dipole [1503.08841 D.B. Franzosi, CZ]
- Complete top-EW operators: almost done [Bylund, Maltoni, Tsinikos, Vryonidou, CZ]

- Decays and FCNC direct t production is available analytically. [1404.1264 CZ], [1305.7386 F. Maltoni, CZ], [hep-ph/0508016 J.J.Liu et al.]
- FCNC associated productions have been implemented. [1412.5594 Degrande, Maltoni, Wang, CZ] <u>http://feynrules.irmp.ucl.ac.be/wiki/TopFCNC</u>

Flavor-	Process	O_{tG}	O_{tB}	O_{tW}	$O^{(3)}_{arphi Q}$	$O^{(1)}_{arphi Q}$	$O_{arphi t}$	$O_{t \varphi}$	$O_{4\mathrm{f}}$	O_G	$O_{arphi G}$
	$t \rightarrow bW \rightarrow bl^+ \nu$	Х		Х	Х				Х		
conserving	pp ightarrow t ilde q	Х		Х	X				Χ		
•	pp ightarrow tW	X		Х	X				Χ	Х	Х
	$pp ightarrow t ar{t}$	X						Х	Х	Х	Х
	$pp ightarrow t ar{t} \gamma$	X	Х	Х				Х	Х	Х	Х
	$pp ightarrow t \gamma j$	X	X	X					X		
	$pp \rightarrow ttZ$	X	X	X	X	X	X	Х	X	Х	Х
	$pp \rightarrow tZj$	X	Х	Х	Х	Х	Х	37	X	37	37
	$pp \rightarrow tth$	X						X	X	Х	X
	$pp \rightarrow tjh$	X			V	V	v	X V	Х		X
	$gg \rightarrow H, HZ$	Λ			Λ	Λ	λ	λ			<u>А</u>
Flavor-	Process		$O_{\phi q}^{(3)}$	$O_{\phi q}^{(1)}$	$O_{\phi u}^{(1)}$	O_{uW}	O_{uE}	$_{B}$ O_{u}	$_{G}$ O_{v}	$_{\mu\phi}$ O	$_{ m 4f}$
changing	$t o q Z^*, \gamma^* -$	$\rightarrow q l^+ l^-$	X	Х	Х	Х	Х	Х			X
(neutral)	$t ightarrow q \gamma$					Х	Х	Х			
(nounar)	t ightarrow qH							Х	Х	Σ.	
	$pp \rightarrow t$ _							Х			X
	pp ightarrow tZ		Х	Х	Х	X	X	Х			X
	$pp ightarrow t\gamma$					Х	Х	X		-	X
	$pp \rightarrow tH$							Х			X

- First automation in flavor-conserving case: ttbar with chromo-dipole [1503.08841 D.B. Franzosi, CZ]
- Complete top-EW operators: almost done [Bylund, Maltoni, Tsinikos, Vryonidou, CZ]
- ttH and tHj: ongoing

Top-Higgs operators in progress

chromo-dipole
$$O_{tG} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\phi} G_{\mu\nu}$$

Yukawa $O_{t\phi} = y_t^3 (\phi^{\dagger} \phi) \bar{Q} t \tilde{\phi}$
gluon-Higgs $O_{\phi G} = y_t^2 (\phi^{\dagger} \phi) G^A_{\mu\nu} G^{A\mu\nu}$
 $\gamma = \frac{2\alpha_s}{\pi} \begin{pmatrix} \frac{1}{6} & 0 & 0 \\ 4 & -1 & 4 \\ \frac{1}{4} & 0 & -\frac{7}{4} \end{pmatrix}$

- Decays and FCNC direct t production is available analytically. [1404.1264 CZ], [1305.7386 F. Maltoni, CZ], [hep-ph/0508016 J.J.Liu et al.]
- FCNC associated productions have been implemented. [1412.5594 Degrande, Maltoni, Wang, CZ] <u>http://feynrules.irmp.ucl.ac.be/wiki/TopFCNC</u>

Flavor-	Process	O_{tG}	O_{tB}	O_{tW}	$O^{(3)}_{arphi Q}$	$O^{(1)}_{arphi Q}$	$O_{arphi t}$	$O_{t \varphi}$	$O_{4\mathrm{f}}$	O_G	$O_{arphi G}$
	$t \rightarrow bW \rightarrow bl^+ \nu$	Х		Х	Х				Х		
conserving	pp ightarrow t ilde q	Х		Х	X				Χ		
•	pp ightarrow tW	X		Х	X				Χ	Х	Х
	$pp ightarrow tar{t}$	X						Х	Х	Х	Х
	$pp ightarrow t ar{t} \gamma$	X	Х	Х				Х	Х	Х	Х
	$pp ightarrow t \gamma j$	X	X	X					X		
	$pp \rightarrow ttZ$	X	X	X	X	X	X	Х	X	Х	Х
	$pp \rightarrow tZj$	X	Х	Х	Х	Х	Х	37	X	37	37
	$pp \rightarrow tth$	X						X	X	Х	X
	$pp \rightarrow tjh$	X			V	V	v	X V	Х		X
	$gg \rightarrow H, HZ$	Λ			Λ	Λ	λ	λ			<u> </u>
Flavor-	Process		$O_{\phi q}^{(3)}$	$O_{\phi q}^{(1)}$	$O_{\phi u}^{(1)}$	O_{uW}	O_{uE}	$_{B}$ O_{u}	$_{G}$ O_{v}	$_{\mu\phi}$ O	$_{ m 4f}$
changing	$t o q Z^*, \gamma^* -$	$\rightarrow q l^+ l^-$	X	Х	Х	Х	Х	Х			X
(neutral)	$t ightarrow q \gamma$					Х	Х	Х			
(nounar)	t ightarrow qH							Х	Х	Σ.	
	$pp \rightarrow t$ _							Х			X
	pp ightarrow tZ		Х	Х	Х	X	X	Х			X
	$pp ightarrow t\gamma$					Х	Х	X		-	X
	$pp \rightarrow tH$							Х			X

- First automation in flavor-conserving case: ttbar with chromo-dipole [1503.08841 D.B. Franzosi, CZ]
- Complete top-EW operators: almost done [Bylund, Maltoni, Tsinikos, Vryonidou, CZ]
- ttH and tHj: ongoing

- Decays and FCNC direct t production is available analytically. [1404.1264 CZ], [1305.7386 F. Maltoni, CZ], [hep-ph/0508016 J.J.Liu et al.]
- FCNC associated productions have been implemented. [1412.5594 Degrande, Maltoni, Wang, CZ] <u>http://feynrules.irmp.ucl.ac.be/wiki/TopFCNC</u>

Flavor-	Process	O_{tG}	O_{tB}	O_{tW}	$O^{(3)}_{arphi Q}$	$O^{(1)}_{arphi Q}$	$O_{arphi t}$	$O_{t \varphi}$	$O_{4\mathrm{f}}$	O_G	$O_{arphi G}$
	$t \rightarrow bW \rightarrow bl^+ \nu$	Х		Х	Х				Х		
conserving	pp ightarrow t ilde q	X		Х	X				X		
-	pp ightarrow tW	X		Х	X				Х	Х	Х
	$pp ightarrow tar{t}$	X						Х	Х	Х	Х
	$pp ightarrow t ar{t} \gamma$	X	Х	Х				Х	Х	Х	Х
	$pp ightarrow t \gamma j$	X	X	X					X		
	$pp \rightarrow ttZ$	X	X	X	X	X	X	Х	X	Х	Х
	$pp \rightarrow tZj$	X	Х	Х	Х	Х	Х	37	X	37	37
	$pp \rightarrow tth$	X						X	X	Х	X
	$pp \rightarrow tjh$	X			V	V	v	X	X		X
	$gg \rightarrow H, HZ$	Λ			Λ	Λ	λ	Λ			Λ
Flavor-	Process		$O_{\phi q}^{(3)}$	$O_{\phi q}^{(1)}$	$O_{\phi u}^{(1)}$	O_{uW}	O_{ul}	$_{B} O_{u}$	$_{G}$ O_{v}	$_{\mu\phi}$ O	4f
changing	$t ightarrow qZ^*, \gamma^* -$	$\rightarrow ql^+l^-$	X	Х	Х	Х	X	Х			x
(noutral)	$t ightarrow q \gamma$	-				Х	Х	Х			
(neutral)	t ightarrow qH							Х	Х		
	$pp \rightarrow t$							Х		2	X
	pp ightarrow tZ		X	Х	Х	Х	Х	Х			X
	$pp ightarrow t\gamma$					Х	Х	Х			X
	pp ightarrow tH							Х	. Х		X

- First automation in flavor-conserving case: ttbar with chromo-dipole [1503.08841 D.B. Franzosi, CZ]
- Complete top-EW operators: almost done [Bylund, Maltoni, Tsinikos, Vryonidou, CZ]
- ttH and tHj: ongoing
- Four fermion operators are planned

Summary

- EFT models are available in several MC tools. In particular the <u>UFO interface provides full support</u> for arbitrary effective vertices.
- UFO models are publicly available
 <u>https://feynrules.irmp.ucl.ac.be/wiki/ModelDatabaseMainPage</u>
- Ongoing developments at <u>NLO with MG5</u>, including Higgs characterisation, HEL, top EFT, etc., and eventually full <u>SMEFT@NLO</u> can be expected.

Backups

EFT approach to BSM

- Instead of looking for new particles, EFT focus on new interactions (of the SM particles).
- SM is the most general Lagrangian at DIM-4. To look for something new, we Energy go to DIM-6.

Λ

SM

New Physics SM Lagrangian supplemented with **DIM-6** operators (hence SMEFT)

$$\mathcal{L}_{\mathrm{EFT}} = \mathcal{L}_{\mathrm{SM}} + \sum_{i} \frac{C_i O_i}{\Lambda^2}$$

Basis

EW-Higgs operators: a comparison

[S. Willenbrock and CZ 2014]

Warsaw/BW/Standard	HISZ	SILH/GGPR
$\mathcal{O}_W = \epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$\mathcal{O}_{WWW} = \text{Tr}[\hat{W}_{\mu\nu}\hat{W}^{\nu\rho}\hat{W}^{\mu}_{\rho}]$	$\mathcal{O}_{3W} = \frac{1}{3!} g \epsilon_{abc} W^{a\nu}_{\mu} W^{b}_{\nu\rho} W^{c\rho\mu}$
$\mathcal{O}_{\varphi W} = \varphi^{\dagger} \varphi W^{I}_{\mu\nu} W^{I\mu\nu}$	$\mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi$	
$\mathcal{O}_{\varphi B} = \varphi^{\dagger} \varphi B_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{BB} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi$	$\mathcal{O}_{BB} = g^{\prime 2} H ^2 B_{\mu\nu} B^{\mu\nu}$
$\mathcal{O}_{\varphi WB} = \varphi^{\dagger} \sigma^{I} \varphi W^{I}_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{BW} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi$	—
	$\mathcal{O}_W = (D_\mu \Phi)^\dagger \hat{W}^{\mu\nu} (D_\nu \Phi)$	$\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$
	$\mathcal{O}_B = (D_\mu \Phi)^\dagger \hat{B}^{\mu\nu} (D_\nu \Phi)$	$\mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$
—	$\mathcal{O}_{DW} = \operatorname{Tr}\left([D_{\mu}, \hat{W}_{\nu\rho}][D^{\mu}, \hat{W}^{\nu\rho}]\right)$	$\mathcal{O}_{2W} = -\frac{1}{2} \left(D^{\mu} W^a_{\mu\nu} \right)^2$
	$\mathcal{O}_{DB} = -\frac{g^{\prime 2}}{2} (\partial_{\mu} B_{\nu\rho}) (\partial^{\mu} B^{\nu\rho})$	$\mathcal{O}_{2B} = -\frac{1}{2} \left(\partial^{\mu} B_{\mu\nu} \right)^2$
		$\mathcal{O}_W = \frac{ig}{2} \left(H^{\dagger} \sigma^a \overleftrightarrow{D}^{\mu} H \right) D^{\nu} W^a_{\mu\nu}$
		$\mathcal{O}_B = \frac{ig'}{2} \left(H^{\dagger} \overleftrightarrow{D}^{\mu} H \right) \partial^{\nu} B_{\mu\nu}$
$\mathcal{O}_{\varphi D} = \left(\varphi^{\dagger} D^{\mu} \varphi\right)^{*} \left(\varphi^{\dagger} D_{\mu} \varphi\right)$	$\mathcal{O}_{\Phi,1} = (D_{\mu}\Phi)^{\dagger}\Phi\Phi^{\dagger}(D^{\mu}\Phi)$	$\mathcal{O}_T = \frac{1}{2} \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right)^2$
$\mathcal{O}_{\varphi\Box} = (\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$\mathcal{O}_{\Phi,2} = \frac{1}{2} \partial_{\mu} (\Phi^{\dagger} \Phi) \partial^{\mu} (\Phi^{\dagger} \Phi)$	$\mathcal{O}_H = \frac{1}{2} (\partial^\mu H ^2)^2$
$\mathcal{O}_{\varphi} = (\varphi^{\dagger}\varphi)^3$	$\mathcal{O}_{\Phi,3} = \frac{1}{3} \left(\Phi^{\dagger} \Phi \right)^3$	$\mathcal{O}_6 = \lambda H ^6$
—	$\mathcal{O}_{\Phi,4} = (D_{\mu}\Phi)^{\dagger} (D^{\mu}\Phi) (\Phi^{\dagger}\Phi)$	—

• EOM can be applied in both directions

$$c_B \mathcal{O}_B \quad \leftrightarrow \quad c_B \frac{g'^2}{g_*^2} \left[-\frac{1}{2} \mathcal{O}_T + \frac{1}{2} \sum_f \left(Y_L^f \mathcal{O}_L^f + Y_R^f \mathcal{O}_R^f \right) \right],$$

$$c_W \mathcal{O}_W \quad \leftrightarrow \quad c_W \frac{g^2}{g_*^2} \left[-\frac{3}{2} \mathcal{O}_H + 2\mathcal{O}_6 + \frac{1}{2} \left(\mathcal{O}_{y_u} + \mathcal{O}_{y_d} + \mathcal{O}_{y_e} + \text{h.c.} \right) + \frac{1}{4} \sum_f \mathcal{O}_L^{(3)f} \right]$$

- Warsaw/BW basis: Bosonic->Fermionic
 - Universal for 3 generations. **Convenient for RG**.
- HISZ, SILH, EGGM: Fermionic->Bosonic: Eliminiate
 - Convenient for PEWM, TGC, and Higgs
 - 2 flat directions in PEWM become more transparent
 - 3 TGC couplings directly related to 3 operators

• EOM can be applied in both directions

Gauge boson+Higgs

with Fermions, summed over 3 generations

- Warsaw/BW basis: Bosonic->Fermionic
 - Universal for 3 generations. **Convenient for RG**.
- HISZ, SILH, EGGM: Fermionic->Bosonic: Eliminiate
 - Convenient for PEWM, TGC, and Higgs
 - 2 flat directions in PEWM become more transparent
 - 3 TGC couplings directly related to 3 operators

[A. Falkowski and F. Riva 2014]

[C. Grojean et al. 2006]

- **2 flat directions** in PEWM in Warsaw/BW
 - Z-pole data involve 10 operators
 - However, only 8 are really constrained.
 - Thus 2 directions are weakly constrained

• e.g., when marginalizing over other operators,

- i.e. a factor of ~2500 weaker.
- Becomes ~10 in one of the "bosonic" bases.

- 2 flat directions in PEWM in Warsaw/BW
 - Z-pole data involve 10 operators $O_{\phi l}, O_{\phi l}^{(3)}, O_{\phi e}, O_{\phi Q}, O_{\phi Q}^{(3)}, O_{\phi u}, O_{\phi d}, O_{ll}, O_{WB}, O_{\phi}^{(3)}$
 - However, only 8 are really constrained.

- [A. Falkowski and F. Riva 2014]
- Thus 2 directions are weakly constrained

[<u>C. Grojean et al. 2006]</u>

$$-\frac{2gscv^{2}}{\alpha}O_{S} - \frac{g'v^{2}}{\alpha}O_{T} + g'O_{hf}^{Y} = 2iB_{\mu\nu}D^{\mu}h^{\dagger}D^{\nu}h, \\ -\frac{4g'scv^{2}}{\alpha}O_{S} + g(O_{hl}^{t} + O_{hq}^{t}) = 4iW_{\mu\nu}^{a}D^{\mu}h^{\dagger}\sigma^{a}D^{\nu}h.$$

- e.g., when marginalizing over other operators,
- $S = 0.05 \pm 0.10, \ T = -0.04 \pm 0.10 \Rightarrow S = 53 \pm 250, \ T = 36 \pm 223$ i.e. a factor of ~2500 weaker.

[<u>B. Grinstein et al. 2013]</u>

• Becomes ~10 in one of the "bosonic" bases.

- **TGC** also look more transparent in SILH/HISZ bases
 - Traditionally uses g_1^Z , κ_γ , λ_Z
 - In **Warsaw/BW** basis, only O_{BW} and O_{3W} enters directly. Remaining degree of freedom comes from shifting input parameters.
 - In **SILH** basis, TGC are directly given by

 $O_{HW} + O_{HB}, \ O_W - O_B + O_{HW} - O_{HB}, \ O_{3W}$

Cross sections at LHC 13

$$\sigma = \sigma_{\rm SM} + C_i \frac{\text{TeV}^2}{\Lambda^2} \sigma_i^{(1)} + \mathcal{O}(\Lambda^{-4})$$

single top

ttbar+V

TGC fit, with W-pair production, plus Higgs data

Higgs is the new tool to precision EW physics

[A. Falkowski et al. 2015]

TGC fit, with W-pair production, plus Higgs data

Combined fit for Higgs op. [J. Ellis et al. 2014]

Signal-strength data combined with TGC (Higgs, TGC, combination)

See also[A. Falkowski, F. Riva 2014][A. Pomarol, F. Riva 2013][T. Corbett et al. 2015][T. Corbett et al. 2013][H. Belusca-Maito 2014]and many others...

$$\mathcal{O}_{WWW} = \text{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}]$$
$$\mathcal{O}_{W} = (D_{\mu}\Phi)^{\dagger}W^{\mu\nu}(D_{\nu}\Phi)$$
$$\mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi),$$
Higgs is the new tool to precision EW physics

• Top fit: FCNC (at NLO)

بووووو

- Top fit: FCNC (at NLO)
- Top fit: flavor conserving

Dataset	\sqrt{s} (TeV)	Measurements	arXiv ref.	Dataset	\sqrt{s} (TeV)	Measurements	arXiv re				
Top pair pro	oduction										
Total cross-s	sections:			Differential of	cross-sections	:					
ATLAS	7	lepton+jets	1406.5375	ATLAS	7	$p_T(t), M_{tar{t}}, y_{tar{t}} $	1407.037				
ATLAS	7	dilepton	1202.4892	CDF	1.96	$M_{t\bar{t}}$	0903.285				
ATLAS	7	lepton+tau	1205.3067	CMS	7	$p_T(t), M_{tar{t}}, y_t, y_{tar{t}}$	1211.222				
ATLAS	7	lepton w/o b jets	1201.1889	CMS	8	$p_T(t), M_{tar{t}}, y_t, y_{tar{t}}$	1505.044				
ATLAS	7	lepton w/ b jets	1406.5375	DØ	1.96	$M_{t\bar{t}}, p_T(t), y_t $	1401.578				
ATLAS	7	tau+jets	1211.7205								
ATLAS	7	$tar{t}, Z\gamma, WW$	1407.0573	Charge asym	nmetries:						
ATLAS	8	dilepton	1202.4892	ATLAS	7	$A_{\rm C}$ (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1311.674				
CMS	7	all hadronic	1302.0508	CMS	7	$A_{\rm C}$ (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1402.380				
CMS	7	dilepton	1208.2761	CDF	1.96	$A_{\rm FB}$ (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1211.100				
CMS	7	lepton+jets	1212.6682	DØ	1.96	$A_{\rm FB}$ (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1405.042				
CMS	7	lepton+tau	1203.6810								
CMS	7	tau+jets	1301.5755	Top widths:							
CMS	8	dilepton	1312.7582	DØ	1.96	Γ_{top}	1308.405				
$\mathrm{CDF} + \mathrm{D} \emptyset$	1.96	Combined world average	1309.7570	CDF	1.96	$\Gamma_{ m top}$	1201.415				
Single top p	roduction			W-boson helicity fractions:							
ATLAS	7	t-channel (differential)	1406.7844	ATLAS	7		1205.248				
CDF	1.96	s-channel (total)	1402.0484	CDF	1.96		1211.452				
CMS	7	t-channel (total)	1406.7844	CMS	7		1308.387				
CMS	8	t-channel (total)	1406.7844	DØ	1.96		1011.654				
DØ	1.96	s-channel (total)	0907.4259								
DØ	1.96	t-channel (total)	1105.2788								
Associated p	roduction			Run II data							
ATLAS	7	$tar{t}\gamma$	1502.00586	CMS	13	$t\bar{t}$ (dilepton)	1510.053				
ATLAS	8	$t\bar{t}Z$	1509.05276								
CMS	8	$t\bar{t}Z$	1406.7830								

كووو

[1512.03360 A. Buckley, et al.]

