

SUSY MC and formats for reporting results

Benjamin Nachman SLAC, Stanford University

on behalf of **ATLAS** and **CMS**

ATLAS-CMS Monte Carlo Generators Workshop CERN, January 12, 2016

Thank you to input from Ana Ovcharova, Nadja Strobbe, Tomasso Lari, & Iacopo Vivarelli !

Supersymmetry provides a framework to investigate a **broad class of models** with a diverse phenomenology

Many of the investigated final states are **not unique to SUSY** - what unifies these searches is the motivation, simulation, and cross-section calculations

SUSY Models

Today: Run II SUSY Simulation

Presentation and Preservation of Results

SUSY Models: Two Approaches

Complete models

Specify parameters that determine the entire SUSY model

e.g. cMSSM, pMSSM

Simplified models

Specify a small number of SUSY degrees of freedom that would participate in LHC-scale physics

Electroweak scale: pMSSM

Specified by 19 weakscale parameters

Very popular for largescale scans of 'realistic models' from ATLAS/CMS

Complete models

GUT-scale: cMSSM

Specified by 5 parameters

An early Run I favorite; there is very little effort now to interpret search results in these frameworks (not used at yet with the 2015 data)

pMSSM Simulation Run I Legacy

Both ATLAS and CMS have performed large pMSSM scans

<u>JHEP 10 (2015) 134</u>

<u>CMS PAS SUS-15-010</u>

Complicated scans, model calculations, low-energy constraints, etc. (deserves its own talk!)

We are doing a great job with simplified models, but there are gaps - largely from long decay chains.

Simplified Models

inclusive squarks and gluinos

biggest gains with the 2015 data

3rd generation

motivated by naturalness

electroweak

strong constraints from LEP

long-lived

e.g. R-hadrons*

RPV

often little or no MET

*this is SUSY in ATLAS but Exotica in CMS

6

Simplified Model Simulation

(Amazingly,) both **ATLAS** and **CMS** use the ~same simulation setup in Run II.

MadGraph + Pythia 8

import model mssm p p > X X(~) @1 add process p p > X X(~) j @2 add process p p > X X(~) j j @3

X = go, t1, etc.

MadGraph only produces the first SUSY particle - **decays are all handled by Pythia**

NLO+NLL cross-sections from SUSY LHC cross-section WG

	ATLAS	CMS
ME Generator	MadGraph	MadGraph
Extra Partons	2	2
Fragmentation	Pythia 8	Pythia 8
PDF	NNPDF2.3 LO	NNPDF2.3 LO
Pythia Tune	Monash Variant (A14)	Monash Variant (CUETP8M1)
Afterburner	EvtGen	N/A
Typical Number of Events	O(10k)	O(100k)
Typical Grid Granularity	varies, but generally coarse	varies, but generally fine

Simplified Model Simulation

Theory Systematic Uncertainties

...and where they go in the bands

Cross-section uncertainties from factorization/ renormalization scale as well as PDF variations

ATLAS: use uncertainties from LHC XS WG (1407.5066)

CMS: 10% for PDF (based on 100 NNPDF variations), independent fact. and ren. scales, ISR modeling (next slide)

(Extra) Radiation

Most SUSY searches are very efficient for the signal

However, some models are ~inaccessible without a e.g. recoil system

ATLAS: Vary ISR/FSR in Pythia for sensitive models/selections only

CMS: (Re-weight*) and take the uncertainty from Z+recoil and tbar+recoil measurements

*Run I only

Polarization

Both **ATLAS** and **CMS** use unpolarized decay and then re-weight after-the-fact (not the case for ATLAS in Run I)

Inspired by <u>Phys. Rev. D 88, 095018 (2013)</u> and is used for decays involving stops and charginos.

Saving Generation Time: Matrix Element Calculations

In **ATLAS**, every model is generated 'On-the-fly':

MadGraph \rightarrow LHE \rightarrow Pythia is run all in one job and LHE files are not saved.

However, in **CMS**, generation happens in two steps, so that LHE files can be re-used:

1) Run MadGraph for a given primary SUSY process (e.g. p p > go go)

2) For all subsequent decays with the same primary SUSY masses, re-use the LHE files from (1)

Saving Generation Time: Detector Sim Generator Filters

14

Obvious observation:

While SUSY searches are generally efficient for signal, they are highly inefficient for the background.

Consequence:

Most background events are not used in studies based on signal-like selections.

Both ATLAS and CMS use ME level generator filters

e.g. 1L, 2L (for signal and background) as well as H_T , $p_T(V)$, np, flavor filters for the background (e.g. W+jets)

Saving Generation Time: Detector Sim Generator Filters

ATLAS has a system of (MET and H_T) generator filters, applied after Pythia 8, but before any detector simulation.

e.g. 4M 1L ttbar MET > 200 sample with ~1% filter efficiency

= effectively 400M events! (about 90% of events with a tight MET cut come from this filtered sample)

(only works for Powheg, aMC@NLO which are relatively fast does not work for Sherpa (gen time ~ fast sim time))

Truth Definitions

We (and you) rely heavily on particle-level objects

systematic uncertainties, acceptance, etc.

The definitions are very similar between **ATLAS** and **CMS**, and likely for SUSY searches the subtle differences are not important.

CMS: truth jets include all status 1 particles except for neutrinos; for leptons we have centrally computed flags which indicate whether a lepton is prompt in a generator independent manner (i.e. no use of hard scatter information, require that lepton does not come from hadron/tau decay or photon conversion); there is currently no central recommendation for dressed leptons.

For the ATLAS definition, see Appendix A: <u>http://arxiv.org/pdf/1403.4853v1.pdf</u>

example: Run I sbottom search

(the actual CL_s map always comes along with the results as well as the best SR)

If you had the same model, but different BR

If your model had the same pheno, but different cross-section

Other useful information

Presentation of results CMS

example: Run I stop 1L search

Less standardized than ATLAS with sometimes more and sometimes less information

Presentation of results

CMS

If your model had the same pheno, but different cross-section

Presentation of results CMS

Acceptance based on reco-level objects

Presentation of results CMS

Other useful information

ets

ATLAS and CMS (mostly) agree on simulation

As we push further into the new energy frontier, we will have key questions to answer:

When/where do we need more precise simulatic

Compressed spectra? 3- and 4-body decays? When are involved? When background looks just like sign

How can we save disk space and CPU time?

Recycling events, filters, etc.

2015 was a great kickoff to hopefully an exciting investigation of the unexplored at the 13 TeV!

The unexplored? (600 GeV large R jet with m_{jet} ~180 GeV and MET ~ 500 GeV)

Run: 271516 Event: 7786087 2015-07-13 09:38:38 CEST

Backup

