Summary of MC workshop

Josh Bendavid, Monica d'Onofrio, Roberto Covarelli, Pietro Govoni, Michelangelo Mangano, Marjorie Shapiro

All 12/01/2016

Matrix-element generators: general

- Important developments in most used matrix-element generators. General effort to include in most of them:
 - NLO QCD calculations (automated in MadGraph/Sherpa) and multileg merging
 - Reweighting for QCD scale, PDF uncertainties etc. in LHA3
 - Parallelisation methods for the generator set-up (amplitude generation, phase-space sampling, MC integration)
 - Loop-induced processes:
 - Possible with internal or external OLPs
 - Timing depending on the method used
 - Not widely used in experiments yet

POWHEG and MadGraph5_aMC@NLO

▶ POWHEG recent updates:

- ttbar with QCD radiation in decays
- MiNLO' method (to be) extended to include new processes
- MadGraph5_aMCatNLO recent updates:
 - Effort towards mixed coupling expansion (QCD + EW corrections)
 - General framework for NLO
 QCD corrections of general
 Lagrangians (NLO QCD)
 - Case-by-case support for EFTs

Sherpa and AlpGen

Sherpa recent updates:

- Several bugfixes (forward jets)
- Multileg merging for loop-induced tested for large set of processes
- New dipole parton-shower

AlpGen: high-jet multiplicity specialist

- Maximum njet (further) increased
- Inclusion of EW corrections
- More hard processes and interfaces to parton-showers
- First tested using special setup on Argonne HPC

Pythia8 and Herwig

- Both now with possibility of including external ME provider (MadGraph)
- Pythia8 recent updates:
 - More matching/merging options supported / «weak merging»
 - New color reconnection model
 - More processes included (double quarkonia)
- ▶ Herwig++ → Herwig7 a major update:
 - End-to-end event simulation
 - ME level via Matchbox (supports NLO, NLO multileg merging in 7.1)
 - Internal q-ordered and dipole showers
 - Hadronization and decays
 - Parallelisation methods available

Generator integration (1)

- Large manpower in both ATLAS and CMS needed
- Similar implementation:
 - Event production run safely on the Grid (including LHE event production): in some cases use LHE external sources, by means of an internal (CMS) or general (ATLAS) parser
 - Bottleneck is generator set-up for complex processes («gridpack» production)
 - ▶ Running this step on the Grid unsuccessful → need for local running on batch farms
 - Very time consuming, not safe for job failures, hitting CPU and memory limit
 - ▶ ATLAS use of supercomputers improves a little the situation

Generator integration (2)

- At event production level, ATLAS reports very large running time per event, CMS does not
 - Main differences: more intensive use of Sherpa, aggressive pT binning

- Discussion: how much this should be uniformed between experiments, avoiding work overlap
 - At gridpack level?
 - At LHE-event level?
 - At HepMC event level?

Underlying event tuning

- Very detailed tuning efforts from experiments
 - ▶ UE, DPS, quark vs. gluon-induced processes
 - Optimised tunes for both Pythia8 and Herwig++

- ▶ Non-universality of tunes: a problem?
 - ▶ Test different samples/phase space regions systematically
- ▶ PS MC soon with possibility to include some tuning uncertainties (e.g. on pT0) as event weights

V+jets, VV, multijets and photons

9 All 12/01/2016

V+jets and VV

Complete review of tools on the market and their accuracy, with emphasis on V+jets at NLO+Ps,V + heavy flavor and DY production at NNLO+PS

▶ Sherpa: MEPS@NLO

All 12/01/2016

V/VV MG5_aMC@NLO and Powheg

Very good performance of MG5_aMC@NLO FxFx

- estimation of perturbative uncertainty + shower "uncertainty"
- 1. $Q_{\rm MS}$ dependence is at most 1.5%. FxFx total typically 3-6% larger than exact inclusive NLO+PS
- 2. once V+2 jets at NLO+PS is included, also higher jet multiplicities are described reasonably well
- 3. the inclusive NLO+PS result depends much more on the PS used

Powheg has several processes
 @NLOPS with I or 2 vector bosons and up to 2 jets

Herwig 7 and more

Herwig NLO+PS matching

- Other tools and generators
 - UNLOPS
 - Powheg + MiNLO

New default: NLO matrix elements matched to the parton shower

[Plätzer,Bellm,Wilcock,Rauch,Reuschle]

- NLOPS automated thanks to Matchbox: ME from external provider via BLHA [GoSam, MadGraph, NJet, OpenLoops, VBFNLO]
- internal POWHEG and MC@NLO NLOPS matching
- two different parton showers: angular-ordered, dipole

All 12/01/2016

DY@NNLOPS

- Reach NNLO + PS with Geneva
- Powheg+MiNLO

UNNLOPS

V+jets and VV from ATLAS/CMS

- Both experiments presented the status of the art of data/MC studies on V, V+jets and VV and set up currently used or planned for 2016 data
- General phisolophy:
 - > 7,8 TeV unfolded data used to develop 13 TeV set up
 - Comparisons with Run I samples also performed as legacy in lack of unfolded data (e.g. Multi-boson)
 - Approaches to estimate uncertainties on modeling also discussed in certain cases
- Preliminary results on data at 13 TeV for V+jets also shown
 - More to be understood and developed:
 - CMS: MG5_aMC@NLO 13 TeV comparisons show slightly higher predictions wrt to data
 - ATLAS: exploit more FxFx, understand remaining discrepancies Sherpa –
 MG + Py8

Z Pt (8 TeV)

'inclusive V'

W Pt (8 TeV)

SMP-13-006

arXiv:1512.02192

New data/MC comparisons. Agreement to $\sim 1 \sigma$ for most of prediction (tree-I. or NLO)

V+jets

Z+jets (8 TeV)

Leading jet kinematics

Eur. Phys. J. C (2015) 75:82 W+jets (7 TeV)

Also for second leading jet pT

II 12/01/2016

V+(2)jets angular correlations

▶ Relevant for several searches as well as higgs analyses ...

W+jets (7 TeV)

Excellent description with aMC@NLO

V + 1 and 2 b-jets

 crucial for VH and several BSM and relevant standalone measurements.
 Use Run I 7 and 8 TeV data. Angular correlations very crucial

ALPGEN+H, Sherpa: shape ok, normalisation off MG 4F/5F+P6: large disagreement in soft Pt region only

V + 1 and 2 b-jets

 crucial for VH and several BSM and relevant standalone measurements.
 Use Run I 7 and 8 TeV data. Angular correlations very crucial

ALPGEN+H, Sherpa: shape ok, normalisation off MG 4F/5F+P6: large disagreement in soft Pt region only

V + 1 and 2 b-jets

 crucial for VH and several BSM and relevant standalone measurements.
 Use Run I 7 and 8 TeV data. Angular correlations very crucial

ALPGEN+H, Sherpa: shape ok, normalisation off MG 4F/5F+P6: large disagreement in soft Pt region only

13 TeV V+jets

ATLAS

CMS

Crucial understanding of high pT regions for both ATLAS and CMS

12/01/2016

Multi-boson

- Several types of multi-boson
- Several generators used

Generator	Process	Setup
Powheg v2 + PYTHIA6	$qq o ZZ o 4\ell$ (8 TeV)	NLO, CT10
	qq o WW (8 TeV)	
MadGraph5 + PYTHIA6	$WZ \rightarrow 3\ell v$ (8 TeV)	LO, CTEQ6L
	qq o WW (8 TeV)	
	$qq ightarrow ZZ ightarrow 2\ell 2 u$ (8 TeV)	
	VVV (8 TeV)	
MC@NLO 4.0 + HERWIG 6	qq o WW (8 TeV)	NLO, CT10
Sherpa v1	qq ightarrow ZZ (8 TeV)	LO, CTEQ6L
GG2ZZ	gg o ZZ (8 TeV)	LO
GG2WW 3.1	gg o WW (8 TeV)	LO
PYTHIA6	WV (8 TeV)	LO
Powheg v2 + PYTHIA8	$WZ ightarrow 3\ell v$ (13 TeV)	NLO, NNPDF3.0
	$qq ightarrow ZZ \ (13 \ {\sf TeV})$	
MCFM + PYTHIA8	gg o ZZ (13 TeV)	LO, NNPDF3.0
MadGraph5 aMC@NLO	<i>VVV</i> (13 TeV)	NLO, NNPDF3.0

Generator	Process	Setup
Sherpa 2.1.1	$qq \rightarrow VV \rightarrow 4\ell, 2\ell 2\nu$	0,1j@NLO + 2,3j@LO, CT10
	$qq \rightarrow VV \rightarrow 3\ell v, 4v$	0j@NLO + 1,2,3j@LO, CT10
	$qq ightarrow ZZ ightarrow 2\ell qq, 2\nu qq$	0,1j@NLO + 2,3j@LO, CT10
	$qq \rightarrow WZ, WW \rightarrow \ell vqq, 2\ell qq, 2vqq$	0j@NLO + 1,2,3j@LO, CT10
	$gg o VV o 4\ell, 2\ell 2v$	0,1j@LO, CT10
	VVjj EWK	0,1j@LO, CT10
	VVV fully leptonic	0j@NLO+1,2j@LO, CT10
Powheg v2 + PYTHIA8	$qq \rightarrow WW, WZ, ZZ$	NLO, CT10 (CTEQ6L1), EvtGen
gg2VV + PYTHIA8	$gg o VV o 4\ell, 2\ell 2v$	LO, CT10
VBFNLO + PYTHIA8	WWW	LO, CT10

- Tree-level VV
- Loop-induced VV
- Electroweak diboson production (VVjj)
- \circ Tri-boson (VVV)

Relevance of comparing generators and calculations using coherent scales

CMS

ATLAS

ATLAS studies

▶ Fully leptonic WW, WZ, ZZ: powheg+pythia8 and sherpa used. Differences under investigation

Semi-leptonic: 13 TeV simulation

- powheg v2 + pythia8 and sherpa 2.1
- Good agreement, well within uncertainties
- Similar studies and conclusions for
 - W(lv)W(qq)
 - > Z(II)Z(qq)
 - W(lv)Z(qq) etc.

CMS studies

▶ 8 TeV results

- Comparison of MadGraph+Pythia, MC@NLO+Herwig, Powheg+Phythia with 8 TeV data
- No single generator better than the others for all distributions, some differences for all generators in $\Delta\phi_{\ell\ell}$
- Good agreement for $p_{\mathsf{T}}^{\ell\ell}$ except for MC@NLO
- For leading lepton p_T , MadGraph predicts too many events in the tails

More work ahead...

- Further studies on diboson and triboson
- Establishment of estimates of systematic uncertainties
 - ► ATLAS/CMS could try to agree on the overall approach
- More studies on loop-induced and EWK processes
 - On this, a theoretical overview from Marek
 - For vector boson production:
- relative size of contribution strongly dependent on observable, but typically <10%

Hirschi, Mattelaer JHEP10(2015)146

			,			_
Proce Doub	$\frac{1}{2}$ ss le bosons $+$ jet	Syntax	Cross section (pb) $\sqrt{s} = 13$	$\Delta_{\hat{\mu}}$ Δ_{PDF} TeV	Ref.	=
b.6 *b.7 b.8 *b.9	$gg ightarrow ZZ$ $gg ightarrow ZZg$ $gg ightarrow Z\gamma$ $gg ightarrow Z\gamma g$	g g > z z [QCD] g g > z z g [QCD] g g > z a [QCD] g g > z a g [QCD]	1.313 ± 0.004 0.6361 ± 0.002 1.265 ± 0.0007 0.4604 ± 0.001	$\begin{array}{c} +27.1\% \ +0.7\% \\ -20.1\% \ -1.0\% \\ +45.4\% \ +1.0\% \\ -29.1\% \ -1.2\% \\ +30.2\% \ +0.6\% \\ -22.2\% \ -1.0\% \\ +43.7\% \ +0.8\% \\ -28.4\% \ -1.1\% \end{array}$	[42] [54] [42] [55]	_
b.10 *b.11	$\begin{array}{c} gg \rightarrow \gamma\gamma \\ gg \rightarrow \gamma\gamma g \end{array}$	gg > aa [QCD] gg > aag [QCD]	$5.182 \pm 0.010 \cdot 10^{+2}$ 19.22 ± 0.030	+72.3% $+1.0%-43.4%$ $-1.3%+59.7%$ $+0.7%-35.7%$ $-1.0%$	[42] [56]	_
b.12 *b.13	$gg \to W^+W^-$ $gg \to W^+W^-g$	g g > w+ w- [QCD] g g > w+ w- g [QCD]	4.099 ± 0.010 1.837 ± 0.004	+26.5% $+0.7%$ $-19.7%$ $-1.0%$ $+45.2%$ $+0.9%$ $-29.0%$ $-1.1%$	[58	includes loop-induced $gg \rightarrow 4\ell$,
<u> </u>						$gg \rightarrow 4\ell + g$, $gq \rightarrow 4\ell + q\bar{q} \rightarrow 4\ell + g$

 $pp \rightarrow 4\ell + 0, 1$ jets

More on loop-induced progresses

- Multiple boson production (VVV,V including gamma, W, Z, H)
- Higgs production in gluon fusion
 - For ggh correction to loop-induced flat and incorporated
 - For pp → h + n-jets can be incorporated in all the multijet merged at NLO machinery avialable in MG, OpenLoops, GoSam
- Interference in higgs production (e.g. new physics in pp → 4l, qqbar @NLO, gg @LO)
- Double/triple higgs production in gluon fusion
- ► Associated higgs production (gg \rightarrow HZ, gg \rightarrow HZg, gq \rightarrow HZq, gg \rightarrow H γ g)

Jets, photon+jet, diphoton production

- Highest order calculations accurately predict the inclusive jet cross-sections across phase-space
- As expected, PS MCs fail → need to use multi-leg generators
- Highest order calculations also able to predict photon and di-photon spectra
- Still more to be understood, possibly with new measurements from ATLAS and CMS

▶ Initial agreement with the SHERPA Monte-Carlo appear to be favourable.

diphoton

All 12/01/2016

Top production and more

29 All 12/01/2016

Top Physics

- Extensive tests and comparisons of many generator setups for tt, ttH, ttW/Z
- Some attempts at tuning MC's
 - -Need to understand most appropriate parameters to tune in this case (parton shower parameters, jet matching/emission veto parameters, etc)

Heavy Flavour/Overlap Removal Discussion

- •W/Z+bb and tt+bb are important processes
- •Requirements from experiments:
 - •Efficient generation of large statistics W/Z/tt + bb samples which can be consistently combined with inclusive W/Z/tt+jets sample
- Current approaches
 - •4fs X+bb generation (issue: not easily combinable with inclusive sample)
 - •5fs X+bb generation (plus maybe additional filtering/ enhancement of parton-shower b contribution) (issue: several samples to combine, not straightforward to do efficiently at NLO)
 - •Possible solutions:
 - Procedure to merge 4fs X+bb with inclusive X+jets
 - Ability to enhance b contribution in ME and/or PS for inclusive X
 +jets sample

Theory Uncertainties Discussion

- Per-event weights are the most convenient mechanism to evaluate MC uncertainties
 - -Currently available for ME renormalization/factorization scale and PDF variations
 - -Available in the future for some PS uncertainties
- •Evaluating shape uncertainties associated with renormalization/factorization scale variations is not fully well-defined:
 - -Possible approaches:
 - •Ad-hoc shape uncertainties (introduce linear slope/etc in 1D distributions)
 - •Vary functional form for dynamic renormalization/factorization scales (possible with per-event weights with modest changes to workflow and/ or MC tools)
 - -Monte Carlo tools with higher order resummation might provide more systematic prescription (eg. GENEVA)

BSM, jet sub-structures

33 All 12/01/2016

EFT: the analysis approach and implementation in generators

Cen Zhang

• SM Lagrangian supplemented with DIM-6 operators (hence SMEFT)

$$oxed{\mathcal{L}_{ ext{EFT}} = \mathcal{L}_{ ext{SM}} + \sum_i rac{C_i O_i}{\Lambda^2}}$$

• The physics goal is to determine the SM Lagrangian at Dim-6.

IMPLEMENTATIONS

EXAMPLES

EFT with MG5

UFO

EFTs with Sherpa

- First EFT applications with tree-level merging
- First steps towards fixed-order NLO with OpenLoops

EFT with Whizard
SM EFT at Dim-6, Some
Dim-8 operators available

Top EFT
Multi-vector boson
Higgs Eff. Lagrangian
...and many more

all you can do with the SM can be done with higher-dim operators.

Going to NLO in QCD with EFT

lop

⊢⊢ I Flavor-

changing

Process	O_{tG}	O_{tB}	O_{tW}	$O_{arphi Q}^{(3)}$	$O_{arphi Q}^{(1)}$	$O_{arphi t}$	O_{tarphi}	O_{4i}	O_G	$O_{arphi G}$
$t \to bW \to b l^+ \nu$	X		X	X				X		
$pp o t ilde{q}$	X		X	X				X		
pp o tW	X		X	X				X	X	\mathbf{X}
pp o t ar t	\mathbf{X}						\mathbf{X}	X	X	\mathbf{X}
$pp o t ar t \gamma$	X	X	X				X	X	X	\mathbf{X}
$pp o t \gamma j$	\mathbf{X}	\mathbf{X}	\mathbf{X}					X	ŧ	
pp o t ar t Z	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	X	X	X	\mathbf{X}
pp o tZj	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		X	1	
pp o t ar t h	X						X	X	X	\mathbf{X}
$pp o t ar{j} h$	X						X	X	1	\mathbf{X}
gg o H, HZ	X			X	X	X	X		W.	X

Process	$O_{\phi q}^{(3)}$	$O_{\phi q}^{(1)}$	$O_{\phi u}^{(1)}$	O_{uW}	O_{uB}	O_{uG}	$O_{u\phi}$	$O_{ m 4f}$
$t \to qZ^*, \gamma^* \to ql^+l^-$	X	X	X	X	X	X		X
$t o q \gamma$				\mathbf{X}	\mathbf{X}	\mathbf{X}		
t o q H						X	X	
pp o t						X		X
pp o tZ	X	X	X	X	X	X		X
$pp o t \gamma$				X	X	X		X
$pp \to tH$						X	X	X

On going developments:
HEL at NLO
(Degrande, Fuks, Mawatari, Mimasu, Sanz)

eventually full SMEFT@NLO can be expected.

QCD corrections to SUSY particle production at the LHC

Squark and gluino production

- large cross sections
- largely model-independent
- large higher-order QCD effects

The cross sections only depend on the SUSY masses

NLO-QCD corrections for generic MSSM spectra

→ Effect of O(10%) on σ x BR for generic MSSM benchmark scenarios

Hollik, Lindert, Pagani; Goncalves-Netto, Lopez-Val, Mawatari, Plehn, Wigmore, Gavin, Hangst, MK, Mühlleitner, Pellen, Popenda, Spira

EWK corrections (EWK loops, EWK x QCD, γ-induced processes)

- → model dependent
- → O(few %) for inclusive cross sections
- → more significant for specific processes and large Q²

Michael Krämer

see e.g. Hollik, Lindert, Mirabella, Pagani (1506.01052 [hep-ph]) and references therein

Squark and gluino production: tools

Prospino, NLL-fast, MadGolem, sPOWHEG, MadGraph5_aMC@NLO, ...

The LHC SUSY cross section working group

will

- provide an update of the SUSY cross section recommendation at NNLL, and including recent pdfs;
- quantify the difference between Mellin space
 ← SCET resummation;
- collect benchmark results for EWK corrections;
- provide links to NLO SUSY tools, together with benchmark results for validation.

Squark and gluino production

A lot of effort (> 20 years) went into calculating higher-order QCD corrections for squark and gluino production

The theoretical uncertainty for inclusive cross sections is ≤ 15%, and is now dominated by the pdf error

In the future, we need to work towards automated NLO calculations for more generic models, including NLL resummation

Exotica Monte Carlo and Maurizio Pierini formats for reporting results

- Three messages to convey
 - Common repository for MC samples (a new MCDB)
 - Official detector simulation to fold detector effects
 - (Even better) supporting RECAST to use official MC/analysis tool (also good for long-term preservation)

An Official Detector Parameterisation?

- Often, inaccuracy on detector resolution is the perturbation
- Sometimes the signature is more detector specific

Having the likelihood, be IMPORTANT

For the Experiments:

- use of LHE files makes easier to integrate generators in experimental frameworks
- A common repository (of LHE files? Gridpacks? UFOs?) would be very beneficial (for analyses and phone studies). A new life for MCDB?

For Pheno studies:

- for plain signatures, fastsim MC codes exist
- integrated with official detector tuning by ATLAS & CMS
- BUT sometimes a "good-enough" fastsim is not enough (e.g. exotic signatures)

The ultimate solution:

- a system like <u>RECAST</u> would solve the problem of re-producing and re-interpreting results.
- With a complete RECAST library and enough CPU resources all phone needs would be covered
- Our community should (in my opinion) push in these directions more

SUSY MC and formats for reporting results Benjamin Nachman

Complete models

Simplified models

Theory Systematic Uncertainties

ATLAS: use uncertainties from LHC XS WG (1407.5066)

CMS: 10% for PDF (based on 100 NNPDF variations), independent fact. and ren. scales, ISR modeling (next slide)

(Extra) Radiation

ATLAS: Vary ISR/FSR in Pythia for sensitive models/selections only

CMS: (Re-weight*) and take the uncertainty from Z+recoil and ttbar+recoil measurements

Both ATLAS and CMS use
 unpolarized decay and then reweight after-the-fact (not the case for ATLAS in Run I)

- Saving Generation Time: Matrix Element Calculations
 Detector Sim Generator Filters
- Truth Definitions The definitions are very similar between ATLAS and CMS, and likely for SUSY searches the subtle differences are not important.
- Presentation of results

Repo for plots and tables: HepData

Repo for plots and tables: CMS public twiki (ROOT files)

Theoretical status and Gavin Salam progress of jet substructure

Principles

#1: the jet mass, a fragile observable.

#2: QCD gluon emission is soft; V/H→qq is not

#3: Radiation patterns differ in V/H/top v. QCD

Computer-vision

What theory aims?

- Develop more powerful methods for discriminating signal/ background
- Understand what physics various "taggers" are actually tagging on:
 - to know whether it's reliably modeled by MCs
 - to know what "features" tagging might induce in data
 - as a guide to developing better tools & for predicting signals & backgrounds

Event generators play key role in testing methods

& theory calculations may teach us things about event generato

Better discrimination?

proper evaluation of theoretical uncertainties

Jet Substructure Tools in CMS

W/Z/H/t Matthias Mozer

Boosted searches and merged-jet techniques in ATLAS

David W. Miller,

- Accurate description at detector-level of the calorimeter jet width across a substantial range in p_T using the A14 tune
- Accurate description of the jet p_T and D_2 in a W/Z+jets dominated final state
- Excellent modeling of both the jet mass and τ_{32} for trimmed jets with $p_{\rm T} > 300~{\rm GeV}$
- Excellent modeling of both the jet mass and D_2 for trimmed jets with $p_T > 200 \text{ GeV}$

Closing remarks

- ▶ **Aim of this workshop**: have a workshop focused on the discussion of the status, issues, needs and prospects for further development of the MC generators for LHC physics.
- **Outcomes**: establish common strategies where possible, follow up with theorists the several improvements on the market, have the best set up for generators to get the best out of 2016 analyses
- ▶ **Action items:** ATLAS/CMS representatives will follow up with theorists and groups on the various topics discussed

Thanks for the great workshop and in particular to all speakers!