
Generators Integration into CMS Software and
Production

Josh Bendavid (Caltech)
for the CMS Generators group

January 11, 2016
ATLAS-CMS Monte Carlo Generators Workshop

Josh Bendavid (Caltech) CMS GEN Integration 1



Introduction

Important for the theory community, and especially generator
authors to understand how we are using external generator
programs in CMS at both a physics and technical level

Better understanding of our needs and workflows → more
effective use of generators in CMS, suggestions for how we
can improve on what we are doing

Josh Bendavid (Caltech) CMS GEN Integration 2



CMS Software Overview

Main CMS software application: CMSSW

Modular C++ application which can be used for event
generation, detector simulation, reconstruction, and analysis

Configuration of CMSSW runs is steered with python-based
configuration files

Input and output with root-based EDM files, which store
run-level, lumi-section-level (23s periods for real data), or
event-level data products

CMSSW links directly to many externals, externally
maintained C, C++, fortran, or python software which is
either an indirect dependency or is directly called from within
CMSSW

Externals are compiled with the same common libraries,
compiler version as CMSSW and packaged together with a
given release, starting from either a tarball from the author’s
website, from GENSER, or from a cms-managed github mirror

Josh Bendavid (Caltech) CMS GEN Integration 3



CMS Production Overview

Python-based tools manage large-scale submission of CMSSW
jobs to grid resources for central production of Monte Carlo,
data processing, etc

Jobs are assumed to be CMSSW jobs configured by the
corresponding python-based configuration

All input and output are assumed to be EDM files (with a few
special cases)

A similar mechanism is available to end users to submit
analysis jobs

CMSSW software and corresponding externals is made
available on worker nodes through CVMFS (distributes
http-based read-only filesystem)

Josh Bendavid (Caltech) CMS GEN Integration 4



CMS Software: Event Generation

Basic paradigm: A C++ module with a common interface makes the
needed calls to a linked external generator code in order to produce for
each event a HepMC::GenEvent, which can then directly stored in the
EDM output

Configuration of the generator takes place within the CMSSW python
configuration

Advantages:

Uniform configuration and IO mechanism (production tools only
have to deal with CMSSW)

No intermediate files needed (HepMC::GenEvent is passed along in

memory to standard CMSSW/root IO mechanisms or directly to

GEANT, which is also called from inside CMSSW)

Disadvantages:

Each generator needs a dedicated interface needed in CMSSW and
needs to be packaged as a CMSSW external

Initialization and event generation calls must be possible from

within a C++ application

In practice, Pythia, Herwig, Sherpa fit very nicely into this paradigm
(with some preference for C++-based versions)

Josh Bendavid (Caltech) CMS GEN Integration 5



Example CMSSW GEN Configuration Fragment

import FWCore.ParameterSet.Config as cms

from Configuration.Generator.Pythia8CommonSettings_cfi import *

from Configuration.Generator.Pythia8CUEP8M1Settings_cfi import *

generator = cms.EDFilter("Pythia8GeneratorFilter",

maxEventsToPrint = cms.untracked.int32(1),

pythiaPylistVerbosity = cms.untracked.int32(1),

filterEfficiency = cms.untracked.double(1.0),

pythiaHepMCVerbosity = cms.untracked.bool(False),

comEnergy = cms.double(13000.0),

crossSection = cms.untracked.double(1.92043e+07),

PythiaParameters = cms.PSet(

pythia8CommonSettingsBlock,

pythia8CUEP8M1SettingsBlock,

processParameters = cms.vstring(

’HardQCD:all = on’,

’PhaseSpace:pTHatMin = 50 ’,

’PhaseSpace:pTHatMax = 80 ’,

),

parameterSets = cms.vstring(’pythia8CommonSettings’,

’pythia8CUEP8M1Settings’,

’processParameters’,

)

)

)

Josh Bendavid (Caltech) CMS GEN Integration 6



CMS Software: LHE Input

CMS maintains its own LHE parser (based on xerces-c xml library)

An LHE file can be read as input to a CMSSW job and is converted on
the fly to C++ classes LHERunInfoProduct and LHEEventInfoProduct
which store the relevant information and can be stored/read from EDM
files (support for per-event weights added to CMS lhe parser and classes)

LHE information can be passed as input to a hadronizer as part of the
event generation step in CMSSW (using for example the Pythia8::LHAup
mechanism to pass the needed information on the fly in memory)

LHE parsers included with Pythia, Herwig etc are not used

Advantage: Uniform hadronizer-independent storage and access to lhe
information

Disadvantage: We have to maintain our own lhe parser

Josh Bendavid (Caltech) CMS GEN Integration 7



LHE Input for Central Production

CMS production tools do not work transparently with ascii
LHE input (metadata not automatically available in data
management system, skipping of events is inefficient, etc)

It is possible to use privately produced LHE files for central
production (user copies the files to eos and then a conversion
step is run to produce EDM files containing the LHE
products, which can then be used for further production steps
for hadronization, simulation, etc)

Disk space, file corruption, etc, are major issues when dealing
with large sets of lhe files in this way

Josh Bendavid (Caltech) CMS GEN Integration 8



Central production of LHE events

LHE generators like Madgraph aMC@NLO, POWHEG, etc cannot be
directly called from within CMSSW in general

Solution is “externalLHEProducer” a C++ CMSSW module which calls
an external script, then reads the resulting LHE file (with the CMS lhe
parser) and produces the necessary
LHERunInfoProduct/LHEEventInfoProduct which can be stored in the
EDM file and/or passed along to the hadronizer

Further issue: LHE generator code cannot easily be included with
CMSSW as an external, since each process requires dedicated (and
sometimes dynamically generated) libraries

Solution: “gridpacks” with pre-generated/compiled code, and with initial
phase space integration results stored in a tarball

Gridpacks are put in CVMFS and can be accessed by jobs (gridpack
location is a configuration parameter of the externalLHEProducer
module)

Minimal and compact external input, and compressed EDM output make
very large scale LHE production possible.

CMS has produced 27 billion LHE events through this mechanism for Run
2 so far.

Josh Bendavid (Caltech) CMS GEN Integration 9



Gridpacks

General gridpack mechanism used in CMS is modeled on the built-in
functionality for LO processes in Madgraph aMC@NLO

We maintain scripts for Madgraph aMC@NLO (including NLO processes),
POWHEG, JHUGen to produce gridpack tarballs based on the
appropriate input cards

Important considerations:

Compiling code on batch workers is discouraged (should be possible
to fully precompile everything)
Long initialization time for event generation is discouraged
Gridpack size is an issue (more than about 500MB for the tarball or
5GB decompressed starts to become problematic)
(For Madgraph aMC@NLO we use lzma compression with very large
dictionaries because of large use of space from duplicated code in
statically linked executables for each subprocess)

Gridpack generation step needs reliability and reasonable run-time

“as the physicist waits” (we can use multi-core machines and/or

condor/lsf batch queues to do the phase space integration, but does

no good if process is bottle-necked by single-threaded steps, or

individual long-running jobs)

Josh Bendavid (Caltech) CMS GEN Integration 10



Parameter Scans

CMS workflows not very well suited for parameter scans

Currently two possibilities:

One configuration and/or gridpack and one Monte Carlo
sample for each parameter point (lots of book-keeping and
preparation work)
Privately produce lhe files for each parameter point and mix
them together in a single eos directory to be imported into
CMS production (unwieldly production and handling of lhe
files)

Some thought and effort towards improving the situation. For
integrated generators like Pythia, Herwig, Sherpa could
randomize configuration and re-initialize every N events for
example

Solution is also needed on the LHE generation side (ideally
without requiring one gridpack per parameter point)

Josh Bendavid (Caltech) CMS GEN Integration 11



Source Code Availability

CMSSW and all of its dependencies and externals (and their
dependencies) are open-source

Practical requirement: Externals (and any code included in
gridpacks) need to be compiled with compatible
compilers/libraries/etc to link to CMSSW and/or run within a
CMSSW environment on the grid

Further Benefit: Substantial manpower and expertise within
the experimental collaborations. We are happy to help debug
issues with the software we are using. Source code (and
publicly accessible cvs/svn/git repository) make it much easier
for us to do this

Further consideration: We should be able to know exactly
what we are putting into the Monte Carlo samples used for
our papers

Josh Bendavid (Caltech) CMS GEN Integration 12



Patching of Generators

We strongly prefer not to apply our own patches to generator
code for obvious reasons of reproducibility and communication
outside CMS

Release schedules for generator tools don’t always line up with
our own production campaign schedules, so sometimes
patches are necessary (but we always discuss it with the
authors first at least)

Very long gap between releases can particularly make this an
issue

Josh Bendavid (Caltech) CMS GEN Integration 13



Schedule Reminder

Lead-time to produce billions of fully simulated and
reconstructed Monte Carlo events is long

Pythia-based production for Run 2 started in October 2014

LHE-based production started (late) in Feb. 2015

Lots of inertia to change things like tunes, pdf’s, etc

Josh Bendavid (Caltech) CMS GEN Integration 14



Conclusions

Generator tools need to be carefully integrated into our
software and production framework to be useful for large-scale
usage

This process is driven by important constraints on both the
CMS side and in the generator tools

Discussing these issues and technical details can hopefully
lead to better and more effectively used generator tools and
interfaces

Josh Bendavid (Caltech) CMS GEN Integration 15


