

Perspectives for Vector Bosons +Jets physics at LHC Run 2

Simon de Visscher (F.N.R.S-UCL-CP3) on behalf of CMS & ATLAS

- Direct: large background for many searches (Higgs, SUSY, Exotic,..) and measurements (top, diboson,...)
 - Need to control them when data driven method is not possible.

- Indirect: provides stringent test of p(QCD) and EWK sectors: lever for signals and (other) background prediction
 - PDF
 - ME+PS description (FNS, merging, scale)
 - higher order QCD and EWK corrections, e.g. at high Pt/Ht

V+jets studies and MC landscape for Run II

- V+jets SM studies: testing/validating predictions from theory
 - Most up-to-date version of ME+PS generators used for full simulation (searches, measurements)
 - Madgraph_aMC@NLO+P8/HWG (FxFx, UNLOPS, KtMLM, ShowerKt, UMEPS), ALPGEN+P8/HWG (MLM), Sherpa (CKKW-L), POWHEG+P8 (MinLO),...
 - Most recent parton-level solution (PDF, α_s)
 - LoopSIM, BlackHat+Sherpa, MEPS@NLO, DYNNLO,...
 - Validation based on
 - **7,8** TeV Rivet analyses
 - I 3 TeV data (coming analyses + Rivet analyses)
- Find 'comfort' zone(s) for each generator: which solution is used for which process (background for searches, measurement), and where, i.e. in which phase-space region it applies.

fnls

V(+jets)

Vector boson kinematics

NNLO prediction follow the same trend: MC deficit below ~100, excess above 100 Powheg+pythia 6.4, excess in [10-30]

Vector boson kinematics

Vector boson kinematics

The Run I statistics does not allow sensitivity to EWK correction (max \sim 5%) Need to consider this at the Run II.

V + jets

Leading jet kinematics

p_⊤(j₁) [GeV]

PDF

CT10

CT10

Leading jet kinematics

ATLAS-CMS Monte Carlo Generators workshop, Jan 11th, TERR momentum of 2nd jet

 $W \rightarrow e\nu$ (MC) vs $W \rightarrow \ell\nu$ (data), dressed level

Data/MC@Run I: Z+jets «ydiff»

 y_{diff} : rapidity difference between Z and leading jet

Phys. Rev. D 88 (2013) 112009

1.8

tna

Data/MC@Run I: W+jets angular correlations

inc.

3.0

MGaMC

+FxFx

V+0..2 NLO

v2.3.2

v8.210

Monash

FxFx

@15 GeV

NNPDF 2.3

V+HF

Motivation for studying V+HF final states

fn^rs

Data/MC@Run I: Z+>=I,2 b-jet in Run I

fnrs

Data/MC@Run I: Z+>=I,2 b-jet in Run I fn^rs

Belgian IUAP meeting, Antwerp, Dec 2015

W+1b/2b, Z+2b

Z+2b

W+Ib/2b, Z+2b

V+HF in Run II

• For Run II

- predictions vs W+1b and Z+2B-hadrons/2b-jets
 - Add γ + HF
 - consider Vcc, with D meson exclusive decays? Full RUn II stat to be considered in this case
- Clarify the use of 4F and 5F predictions
- 4F prediction
 - Tree level or NLO?
 - Impact of scale choices at NLO for 4F
- Need also a more coherent of MC treatment between ATLAS and CMS in the data/MC comparison

• Test experimentally the hypothesis of an NP HQ (charm) contribution in the proton, using γ +c, Z+c,W+b

- Recent (NN)PDF developments to include IC in global fit [Ball et al. arXiv:1510.0009]
- Might be challenging depending on the ability to control the scale, PDF, merging uncertainties and dependency to FNS choice. Not clear how to attack this problem efficiently.

fnľo

A quick look to 13 TeV data/MC comparisons

Z (+jets) from ATLAS

	Generator	ME	PS	ME+PS	PDF
	MG+P8 A	V+04p v5.2.2.2	v8.186	Kt-MLM @20 GeV	NNPDF NLO v3.0
	MG+P8 B	V+04p v5.2.2.3	v8.210	Kt-MLM @30 GeV	NNPDF NLO v2.0
	Sherpa 2.1	V+02 NLO V+34 LO v2.1.1	v2.1.1	CKKW-L @20 GeV	NLO CT10

ATLAS-CMS MonteCarlo Generators workshop, Jan 11th, CERN

fnľ

Z+jets from ATLAS

 \mathbf{p}^{jet}

(leading jet) [GeV]

300

2.5

3

3.5

4

|y|(2nd jet)

ATLAS-CMS MonteCarlo Generators workshop, Jan 11th, CERN Rapidity of 3rd jet

1.5

0

0.5

200

100

Z+jets from CMS

- CMS and ATLAS have provided many V(+jets) results during Run I
 - V+light: test predictions from theory and refine knowledge of (p)QCD and EWK higher order corrections. The understanding of the data/MC discrepancies is partial so far.
 - V+HF:
 - Run I confirmed known effects (W+b), and even seem to enforce them (Z+bb)
 - Need a coherent understanding of these processes, the direct and indirect impact on search is potentially large.
- Need to identify how the most up-to-date/recent prediction do work at 13 TeV: which solution for which process, where it makes sense
 - Coordination between ATLAS and CMS?
- Data/MC comparison with Run II started.
 - Run II statistics + new HO prediction from theory
 - More sensitivity to understand impact of EWK corrections
 - access new corners of the phase, also using 2/3/..-D slicing: better understanding of particular kinematic configurations

Backup slides

V+jets at Run I and Run II: statistics

Let's assume L=100/fb per experiment at 13 TeV

- Xsec increase x lumi increase w.r.t. 8 TeV (pt_{jet,l}>30 GeV, |eta_{jet,l}|<2.5)
 - $\Rightarrow >\sim 8 \times 10^{-10} \text{ more statistics available at the end of the Run 2 for W and Z+jets (more for gq and gg initial states)}$

Stattistical uncertainty reduction allows to

probe higher scales (Pt, Ht,...)

slice the phase-space (2/3/..-D measurements)

W and Z+I jet @ NNLO: Data vs MC

NNLO uncertainty smaller than the experimental one

 Need to quantify the improvement with Data/MC comparison ATLAS-CMS MonteCarlo Generators workshop, Jan 11th, CERN in tails

Testing QCD and EW at NLO with W+1,2,3j

;.

n

32

EW corrections

V+jets main 'features': Z+jets

Leading jet pt: issue less pronounced for Z+jets than for W+jets

fn^rs

700

fnis B

Different trends observed. Generally very reasonable agreement, even with tree-level predictions

Different trends observed. Generally very reasonable agreement, even with tree-level predictions

Z+jets angular correlation: event shapes firs

• Event shapes

Ongoing I3 TeV work

Preliminary public V+jets results

Z+jets (ATLAS)

Z+jets (CMS)

No superseeding of physics message from Run I yet, but new results will come fast

γ+jets (ATLAS)

• PDF from photon+jets

- Current LHC only allow mild reduction of g-PDF uncertainty. A reduction of systematic uncertainties is the key.
 - One promising solution: use ratio between 13 and 8 TeV photon spectra for a partial cancellation of uncertainties (both experimental and theoretical)
 - Consider different photon isolation isolation?
- N-jetiness: test of jet resummation
 - Experimentally: problematic of using vetos on soft radiation in searches (lower background, etc...)
 - Measure 0-, I-, 2-jetiness first using jets, then using charged particles
- W+c: extract strange PDF
 - Increase of statistics will allow more precise PDF fit: shed light on s-PDF tension between CMS and ATLAS.

Inclusive V @ Run II: PDF from inclusive V studies

• Light q-PDF in low/high x

- Moving from 7/8 TeV to 13 TeV: access different x regions
- Exploit inclusive xsec (W, Z)
 - W Pt, Z Pt, W charge asymmetry,...
 - e.g. high DY mass or low DY mass ranges to target specific x ranges
 - high mass range:
 - Run II can make a big difference in stat.
 - Access to photon PDF
- Inclusive xsec ratio
 - less sensitivity to αs and PDF, but (partial) cancellation of exp. systematics and scale uncertainties.
 - Double ratio: using ratio of processes at 2 different energies?

this

ATLAS MC note: Z+jets

Figure 2: (a) Exclusive jet multiplicity and (b) H_T (the scalar sum of lepton and jet transverse momenta) in the 7 TeV Z+jets analysis. No k-factor is applied to the aMC@NLO sample.

ATLAS MC note: Z+jets

Figure 3: Transverse momentum and rapidity of the leading (a,b), second (c,d) and third (e,f) jets, in the 7 TeV Z+jets analysis. No k-factor is applied to the aMC@NLO sample.

ATLAS MC note: Z+jets

Figure 5: Transverse momentum (a) and rapidity (b) of *b*-jets in *Z* events, and (c) $\Delta\phi$ between the *Z* and *b*-jet for the *Z*+*b*-jets analysis at 7 TeV. For *Z* events with at least two *b*-jets, (d) ΔR between the two leading *b*-jets. No k-factor is applied to the aMC@NLO sample.

fn

ATLAS MC note: W+jets

Figure 6: k_t scale of the (a) $0 \rightarrow 1$, (b) $1 \rightarrow 2$, (a) $2 \rightarrow 3$, and (a) $3 \rightarrow 4$ clusterings in the *W*+jets analysis at 7 TeV. No k-factor is applied to the aMC@NLO sample.

Figure 7: The (a) inclusive jet multiplicity and (b) H_T in the 7 TeV W+jets analysis. No k-factor is applied to the aMC@NLO sample.

ATLAS MC note: W+jets

Figure 8: The p_T and rapidity of the (a,b) leading, (c, d) subleading (e,f) third jets in the 7 TeV *W*+jets analysis. No k-factor is applied to the aMC@NLO sample.

- $Z+j/\gamma+j$ ratio of pt spectra:
 - partial cancellation of uncertainties (jets,...), hence gets to more precision
 - Useful for SUSY search (control Z via γ)
- Run I: up to 800 GeV
 - ► LO→NLO (**QCD**): effect on ratio is very small
 - Adding **EWK**: effect on ratio:
 - -15% at 600 GeV (Run I), but large exp. uncertainty
 - -20% at 1.5 TeV
- At I3 TeV, expect sensitivity to EWK corrections at 500-600 GeV?
 - Below, exp. systematics might still dominate
- What effect for W/Z ratio (better exp. cancellation)?

Kallweit et al., <u>arXiv:1511.08692</u>

EVV Sudakov logs beyond NLO [Kuhn, Kulesza, S.P.,Schulze '04–'07; Becher, Garcia i Tormo '13] NLO QCD+EW with off-shell Z/W decays

[Denner.Dittmaier,Kasprzik,Muck '09–'11]

NLO QCD

NLO QCD+EW NLO QCD×EW Secup: $\sqrt{S} = 13 \text{ TeV}$ $p_{T,j} > 30 \text{ GeV},$ $\mu_0 = \hat{H}_T/2 \ (+7-j)$

trong motivations for V+multijets at NLO EW

multi-jet case: EW Sudakov poorly explored and crucial for BSM searches

huge di-jet contributions at high jet $p_T \Rightarrow V + 1$ jet NLO EW insufficient!!

overlap with EW processes (VBF,VV',tj, tW, $t\bar{t}$) and interference with QCD

S. Pozzorini (Zurich University) PT [GeV]di-jet contributions at high jet $p_T \Rightarrow V + 1$ jet NLO PT [GeV] PT [GeV]PT [GeV]

For Run II: V+n jets/V+jets: predict higher jet multiplicities

ATLAS-CMS MonteCarlo Generators workshop, Jan 11th, CERN

0.0

200

400

600

 $H_{\rm T}$ [GeV]

800

1000

 H_T