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Outline

- Calorimetry at a future linear collider

- CALICE Analog Hadronic Calorimeter

- Active Elements – Silicon Photomultipliers 
                                       & Scintillating tiles 

- Electronics development
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ILC: The international linear collider

Future e -e  accelerator, sqrt(s) up to 500 GeV (Possible upgrade to 1TeV)⁻ ⁺

31km length in 500GeV baseline design

Mature machine technology

Two interchangeable Detectors:

ILD & SID

Physics goals: Precision measurements 

e.g. Higgs coupling, …
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ILD - International Large Detector

Tracking:

  Pixel Detectors (CMOS/CCD/DEPFET)

  TPC (Micromegas / GEM)

Calorimetry 

  Si / Scintillator+SiPM (ECAL)

  RPC / Scintillator+SiPM (HCAL)

Muon system

  RPC / Scintillator+SiPM

~14m
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Calorimetry in HEP

Most common structure:
Sampling Calorimeter

Dense absorber (e.g. steel, tungsten, … )
  Cost optimization: material volume ↔ magnet size
Active medium (e.g. scintillator, RPC, LAr)

Energy measurement by “counting” of tracks in 
shower

absorber

active layers
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Calorimetry for ILC experiments

Seeking energy resolution:

σ(Ejet)/Ejet ≈ 3-4% for Ejet= 40 – 500 GeV

Differentiate decays W → jj  ,Z → jj from mass reconstruction

Typical hadronic calorimeter:

σ(Ejet)/Ejet ≈ 60%/√E[GeV] + 2%

→ 10% for Ejet = 50GeV

ILD approach: Particle flow algorithms

CALICE collaboration
Calorimetry for a future linear collider experiment. Includes SiD, CLIC
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Particle flow algorithms

Use sub-detector with highest resolution:

Charged particles → Tracking

e, γ → ECAL

n, K → HCAL

Ideally: Only measure energy of neutrals in HCAL

Calorimetry for ILC experiments
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Particle flow algorithms

Use sub-detector with highest resolution:

Charged particles → Tracking ~60 %

e, γ → ECAL ~30 %

n, K → HCAL ~10 %

Ideally: Only measure energy of neutrals in HCAL

10 % neutrals in typical jet 

typical jet

Calorimetry for ILC experiments
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Particle flow algorithms

Use sub-detector with highest resolution:

Charged particles → Tracking ~60 % σx ~ 0

e, γ → ECAL ~30 % σγ  ~ 6% / sqrt(Ej)

n, K → HCAL ~10 % σhad ~ 16% / sqrt(Ej)

Ideally: Only measure energy of neutrals in HCAL

10 % neutrals in typical jet 

… still 16%/√E contribution from neutral Hadrons

   … still need a good calorimeter!

typical jet Ejj contributions

σ²jet = σ²X + σ²γ + σ²had + σ²loss + σ²conf

Calorimeters for Particle Flow
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Higher energies: Confusion term dominates

 

 

Wrong association of tracks ↔ showers

→ Good Tracking

→ Good shower separation

σ²jet = σ²X + σ²γ + σ²had + σ²loss + σ²conf

Classical calorimeter

ILD calorimeter

Confusion term

Particle flow Algorithms

Separated showers
(distance 8cm)

Calorimeters for Particle Flow
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Calorimeters for Particle Flow

Parameters for energy resolution

→ electromagnetic performance

→ hadronic performance

→ shower separation

Requires precise modeling of shower structure

Detector optimization

→ High Granularity

       “Imaging Calorimeters”
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Calorimeters for Particle Flow

  High Granularity

       “Imaging Calorimeters”

  Different concepts:

  Cell size vs. Quantization resolution

  → Digital / Semi-digital HCAL

              1 or 2bit per cell, ~1cm²

  → Analog HCAL

            10-12 bit per cell, ~10cm²

©K. Krüger
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High granularity?

ILD simulation of a 100GeV jet [arXiv:0907.3577v1] Atlas ~300GeV dijet event
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CALICE AHCAL

● Analog Hadronic Calorimeter concept

● Scintillator based sampling calorimeter,

tiles of 3x3cm²

● Individual SiPM readout per cell

● 1m³ physics prototype operated 2006 – 2012

● Intensive performance studies:

EM&Hadronic showers, Imaging capabilities 
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Performance of the physics prototype 

Energy resolution validated, e.g.

– Electromagnetic showers

– Hadrons

Electromagnetic response

Response to hadrons

Fit: 45%/√E + 1%
(using Software compensation)
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Performance of the physics prototype 

Validation of  PFA capabilities and monte carlo shower models

– Shower separation

– GEANT4 shower model validation

Imaging validation & performance
JINST 6 P07005 (2011)  

Validation of GEANT4 shower models
JINST 8 P07005 (2013)
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Heading to a scalable system
- Engineering prototype 
Goal:

Develop part of full calorimeter that could be 
scaled to full size

Challenges:

 Scalability: 

          10 000  channels in physics prototype 

     8 000 000  channels in ILD detector

 → Tile R&D for scalability

 Compactness:

         High integration level

         No active cooling

→ Destinct readout electronics, DAQ and          
     calibration system
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Active Elements – Scintillating Tiles

Parameters for tile R&D

Light yield, Signal-to-noise ratio

Response uniformity

Cell to cell crosstalk

Scalable prototypes:

Possibility of mass production 

cost …

→ Simplification of tile design

Uniformity scans
using Sr90 source

Tile B) response to 
β source 
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Active Elements – Scintillating Tiles
Mass production & testing possibility becomes important

Simplifictation of tile production:

     Availability of Blue & nUV sensitive sensors → Fiberless coupling

     Improved yield & Quality of sensors → SMD mounting of sensors

Cost, Time per tile: Production, Testing, Mounting, …   1s / tile

    → Dedicated work on Mass Characterization & Assembly

Concepts for fiberless couplingPhysics prototype SMD mounted SiPMs

wave length shifter

sensor
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Active elements – Silicon Photomultipliers

Read-out of scintillation light - O(10) detected photons

Normal Photomultipliers: Large, B-Field sensitive

Compact semiconductor devices: 

Silicon Photomultipliers

Key component:

  Avalanche photo diode

APD: Doping concentration & Field

Drift: Gain = 1

Linear region:
Gain O(10 )⁵

Geiger region:
Infinite Gain
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Active elements – Silicon Photomultipliers

Silicon Photomultipliers

Parallel connected APDs in geiger mode

Avalanche Quenching resistor

 → APD pixels are 'binary devices'

Q =  Npx  *   Cpx  ( U – Ubr)

    ~ Incident photons

    ~ Traversing particles

single pixel gainfired pixels
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Scintillator ECAL option

Even higher granularity than HCAL

Segmentation: 1cm²

One option: Scintillating strips & SiPM readout

Similar scintillator optimizations as for AHCAL

Large dynamic range 

→ Large pixel count SiPMs (10k pixels/mm²   – low gain)

SCECAL: scintillator strips strip uniformity Layer for engineering prototype
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Readout electronics for CALICE
Measurements

Shower timing [<1ns]

Energy measurement:

Small signals (SiPM gain calibration)

  [Charge ~15fC … 2pC]

Large signals (MIP counting) 

  [Charge up to 150pC]

High integration level

   Fully integrated readout electronics

   No active cooling → Low power

   Self-triggered operation

   SiPM gain adjustment

→ Requires a versatile chip
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Readout electronics for CALICE

Development of Mixed signal ASICs

- Analog Front-end
- Integrated ADC, TDC
- Digital readout

Baseline solution:
SPIROC, designed by French group

Development for low gain SiPMs:
KLauS ASIC (KIP)

SPIROC2b, Omega/F KLauS2, KIP

Measurements

Shower timing [<1ns]

Energy measurement:

Small signals (SiPM gain calibration)

  [Charge ~15fC … 2pC]

Large signals (MIP counting) 

  [Charge up to 150pC]

High integration level

   Fully integrated readout electronics

   SiPM gain adjustment

   No active cooling → Low power
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Readout electronics for CALICE

Temperature & SiPM parameter fluctuations

Gain adjustments per channel

Large number of channels

-One HV source per layer (~2500 channels)

-Small tuning range for each SiPM (~2V)

Measurements

Shower timing [<1ns]

Energy measurement:

Small signals (SiPM gain calibration)

  [Charge ~15fC … 2pC]

Large signals (MIP counting) 

  [Charge up to 150pC]

High integration level

   Fully integrated readout electronics

   SiPM gain adjustment

   No active cooling → Low power
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Readout electronics for CALICE

Low power consumption

- Constraint: ~25uW / channel

Met by: 
- Intrinsic low power design
- Power gating (1% duty cycle)

Main constraint in design!

Chip ON Chip OFF

Measurements

Shower timing [<1ns]

Energy measurement:

Small signals (SiPM gain calibration)

  [Charge ~15fC … 2pC]

Large signals (MIP counting) 

  [Charge up to 150pC]

High integration level

   Fully integrated readout electronics

   SiPM gain adjustment

   No active cooling → Low power



Readout electronics for CALICE

Development of 'KLauS'

   Analog front-end,

   ADC for digitization,

   digital parts …

→ Multi channel ASIC planned for 2016

All blocks optimized for 

   Low power consumption (Power pulsing capable)

   Different requirements for Calibration [small signals, low noise] 

   and 'Physics' [Large dynamic range]

[KLauS2.0 – analog only] [KLauS3.0  – frontend & ADC]
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Input stage:
   Low input impedance
   SiPM bias voltage DAC

High gain stage:
   Single pixel spectra
   O(10ths of pixels)
   Low noise

Low gain stage:
   Full SiPM dynamic range

2 Trigger branches

Minimize power consumption
   Power gating
   Dual supply scheme

KLauS3 front-end: Blocks
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ADC for KLauS

1 ADC per front-end channel
→ Development of low power ADC

Two operation modes:
SiPM gain calibration – 12bit resolution
MIP quantization – 10bit resolution

Maximum Event rate: 3MHz

 

[10b ADC DNL - Preliminary]

[10b ADC Linearity]

Track & hold
10b ADC

8b pipeline stage
→ 12b operation
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Summary

The CALICE collaboration is developing calorimeters for a future linear collider

Detector optimization for Particle flow algorithms

● High Granularity

● AHCAL concept: SiPM + Scintillator based hadronic calorimeter

Scalable prototype

● New challenges for active elements:

Stronger focus on scalability of production,

testing and assembly

● Development of readout electronics

Fully integrated

Very low power consumption
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- Backup -
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CALICE AHCAL Contributors

Uni Bergen

Prag
Northern 
Illinois Uni

DESY

CERN

Uni Hamburg

Omega

Dubna

ITEP

MPI München

Uni Wuppertal Uni Mainz
Uni Heidelberg

Matsumoto,
Japan
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Engineering prototype – Current state

Testbeam 2015 at CERN SPS

● Steel stack

● 2x ECAL layers

● 8x 30x30cm HCAL layers

● 4x 60x60cm HCAL layers

● Pions runs

● Muons



HighRR seminar Oct/28/15 Konrad Briggl 33

Evolution of tile designs

Physics prototype

ITEP

1st design for tech. prototype

 ITEP

MPP  ITEP

Fiber-less coupling,
Tighter tolerances

Simplified assembly
Mechanical alignment

Fiber-less coupling,
Injection molding



After the tile production... 
Quality assurance

    SiPM functionality test

    Tile characterization

Assembly in larger modules:

    Precise tile placement

    Soldering

Soldering studies Placement studies 

Tile characterization
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● Fast measurement →  Only basic parameters 
measured

● Parallelization  (12 channels)

● UV Laser instead of source

● Currently 2min for 12 tiles, then repositioning

● Automatic electronic and optical connection 

● ≈ 1500 tiles characterized for testbeam prototypes

Automated characterization of Tiles
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● Large number of components require automatic 
Placement and soldering of Tiles to HBU

● Precise & fast placement

● Fast gluing procedure 

→ Possibility to place tiles  without mechanical alignment

Automated assembly of HBUs
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● Different options for soldering technology

● Challenge: Soldering of (very) heat sensitive components

● Automation poses additional requirements on PCB design

● Wave soldering: 

– Heat protecting mask to avoid heating up other 
components 

●  Selective soldering

– Slower, possible speed up by multi point head

Automated assembly of HBUs

Melted tile dimple after first 
soldering tests

Multi point head for selective soldering 



[KLauS3.0 miniASIC – front-end & ADC]

ADC

FE Bias

FE Channel

digital 
part

KLauS development status

 'KLauS2' : AMS 350nm Technology [Design: W. Shen, 2010] 

   → Validation of input stage topology
'KLauS3.0a/b' : UMC 180nm (March/15 & May/15)
   → ADC [Design: W. Shen; Layout: H. Chen]
   → New front-end [Design: K. Briggl]

Further development plans
Until Summer 2016

Multi-channel readout ASIC 
Combined front-end; ADC; basic TDC blocks

[KLauS2.0 – analog only]

KLauS Development status & Plans



Front-end: block level schematic



Common gate & current feedback

Nominal input impedance ~50Ω

150uA bias current @ 3.3V

SiPM Bias voltage tuning
['DAC'  'feedback'  input]→ →
~ 2V tuning range
Low power 8bit DAC
  2nA / LSB

Power gating compatible
Small DC input voltage change in
low power mode

Input stage topology

[simplified schematic]



High gain stage: Active integration scheme
  for small signals on single pixel level
  Miller-opamp with 400MHz GBW

Low gain stage: Passive integration
  for large signals
  input stage mirror: regulated cascode 
  pmos integration mirror: low voltage cascodes 

Pedestal stabilization 
  DC feedback of channel output
  Using subthreshold Amplifiers

Charge integration
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)



Shaper: Sallen-Key topology
   → pair of complex poles

Shaper and channel pulse response

Same time constants for integration & shaper
   → Semi gaussian pulse, small undershoot



Simulations: Linearity & Noise

High gain stage
  Design goal:
  Allow decent SNR for very low gain Sensors
  [e.g. Hamamatsu 10 m seriesμ , Gain ~10⁵]
  Expected ENC < 3fC

 → Single pixel S/N > 5

  Dynamic range ~ 2pC @ INL < 1% FSR
  [≈ 135px for 10μm ; ≈34px for 25μm MPPC]

Low gain stage
  Exploit SiPM dynamic range
     ~ 140pC @ INL < 1% FSR

  Moderate SNR requirements
     Equivalent noise charge ~ 50fC
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Pulse height & INL vs. Charge



Front-end measurements:
SiPM bias voltage DAC

Measure DC voltage at SiPM input

2V tuning range achieved

Analysis of Nonlinearity sources

  Main source is DNL (3 LSB)
    [Layout update in next submission]
  Other sources negligible & as expected 



Front-end measurements:
Charge injection

Test of high gain stage
- Pulse shape after integration & shaping
- Dynamic range

Sufficient for single pixel spectra
Preliminary bias settings
Limited by off-chip driver dynamic range

Integration

Shaped output

Cd = 33p

2pC



Front-end measurements:
test with sensors

Two SiPM models tested

10μm pixel device [Gain ~1.5x10⁵]
[Hamamatsu S12571-010C]

25μm pixel device [Gain ~2.75x10⁵]
[Hamamatsu S10362-11-025C]

~15mV / px

~10mV / px



SAR ADC development for KLauS

1 ADC per front-end channel
→ Development of low power ADC

Two operation modes:
MIP quantization – 10bit resolution
  5+4bit SAR ADC

SiPM gain calibration – 12bit resolution
  Additional pipelined stage
  Residual amplification & digitization

Relatively low Sampling rate needed
Peak voltage digitization
validated up to 3MHz
No constraint on dynamic performance

DC Power consumption < 1mW



ADC – 10bit main SAR

SCA:
5+4bit binary MIM capacitor array
  Unit capacitor ~ 34fF

Other blocks:
Dynamic comparator
Bootstrap sampling switch
Control logic in digital part



ADC: Pipelined stage

12b resolution operation mode
for SiPM spectrum digitization

3 digitization steps: 
  (1) 5b digitization in main SAR
  (2) Amplification of residual error

Fully differential folded cascode amplifier
  (3) 8b digitization in pipelined stage

5+4 split MIM capacitor array
Unit capacitor ~ 34fF

      remaining bits saved for redundancy

(1) (2) (3)
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