UAE Tangier Node

Presented by Abdesslam Arhrib

"Non minimal Higgs": 1st RISE meeting; 6-8th December 2015

University of Warsaw

Tangier node

Faculty members:

- Abdesslam Arhrib (Tangier)
- Rachid Benbrik (Marrakesh)
- Mohamed Chabab (Marrakesh)

PhD students:

- Jaouad El-Falaki and Adil Jueid (Tangier)
- Souad Semlali and El Batoul (Marrakesh)

Post-doctoral:

Larbi Rahili (Marrakesh)

Radiative corrections; unitarity constraint and BFB, QCD, extended Higgs models, MSSM, Tools for loop calculations.

Secondments

- El Falaki (Tangier) \rightarrow Aveiro/Lisboa (November'15)
- A.Arhrib (Tangier) \rightarrow Lisboa January'16(2 weeks)
- **9** R. Benbrik (Marrakesh) \rightarrow Soton (January'16)
- M. Chabab (Marrakesh) \rightarrow Lisboa (multiHiggs'16)
- ??? (Tangier) \rightarrow Lisboa (multiHiggs'16)
- ??? (Tangier) \rightarrow Lisboa (ChargedHiggs'16)

Recent activities

I. "Radiative corrections to the Triple Higgs Coupling in the nert Higgs Doublet Model," A. A, R. Benbrik, J. El Falaki and A. Jueid.

- Corrections to *hhh* could be extremely large.
- If the invisible decay $h \to HH$ is open, the constraints from DM could reduce these corrections, but they can still be of the order of 100% for heavy H^{\pm} or A^0 .
- loop-corrections to $e^+e^- \rightarrow Zhh$ through *hhh* one loop coupling are also large

Recent activities (cont.)

2. "Type II Seesaw Higgsology and LEP/LHC constraints," A.A, R. Benbrik, G. Moultaka and L. Rahili, arXiv:1411.5645 Degenerate Higgs bosons decays to $\gamma\gamma$ and $Z\gamma$ in the type II seesaw Model," *I*. Chabab, M. Capdequi. Peyranère and L. Rahili. (Phys. Rev. D **90**, 035026 (2014))

- We study both: h is SM-like and H is SM-like.
- In the case where H is SM-like: We study the constraints on these light CP-even (h0) and CP-odd (A0) states from LEP exclusion limits and LHC constraints.
- If h and H are degenerate, we show that the LHC data can be interpreted within a delineated region controlled by λ₁ and λ₄ coupling which favours a light H^{±±}.
- Correlation between $h \to \gamma \gamma$ and $h \to \gamma Z$.

Recent activities (cont.)

3. "Two-Higgs-Doublet type-II and -III models and $t \to ch$ at the LHC,"; A. Arhrib, R. Benbrik, C. H. Chen, M. Gomez-Bock and S. Semlali, arXiv:1508.06490. $h, Z \to \ell_i \bar{\ell}_j, \Delta a_\mu, \tau \to (3\mu, \mu\gamma)$ in generic two-Higgs-doublet models,"

R. Benbrik, C. H. Chen and T. Nomura, arXiv:1511.08544 [hep-ph].

The allowed regions in $(\sin \alpha, \tan \beta)$, left: 2HDM-II, right 2HDM-III. The errors for χ -square it are 99.7% CL (black), 95.5% CL (red) and 68% CL (green).

Confrontig $h \to \tau \mu$ and $(g-2)_{\mu}$ with Higg data

Contours plots of $h \to \tau \mu$ in $(\tan \beta, \cos(\beta - \alpha))$ plan.

Recent activities (cont.)

4. "Enhanced Charged Higgs Production through W^{\pm} -Higgs Fusion," A. Arhrib, K. Cheung, J. S. Lee and C. T. Lu, arXiv:1509.00978 [hep-ph].

Ongoing activities

- "Naturalness in Type II Seesaw and implications for Physical scalars"
 M. Chabab, M. C. Peyranère and L. Rahili.
- We show from naturalness considerations that the Veltman condition is modified by virtue of the additional scalar charged states of Higgs Triplet Model (HTM).
- We analyse the naturalness condition effects to the masses of heavy Higgs bosons H⁰, A⁰, H[±] and H^{±±}, providing a drastic reduction of the ranges of variation of m_{H[±]} and m_{H^{±±}} with an upper bounds at 288 GeV and 351 GeV respectively, while predicting an almost mass degeneracy for the neutral Higgs, about 207 GeV.

Ongoing activities(cont.)

- 2. Anomalous tbW couplings in 2HDM
- New physics might induce non-trivial tensorial couplings.

$$\mathcal{L} = \frac{ig}{\sqrt{2}}\bar{u}_b(p_b)\left[(V_L P_L + V_R P_R)\gamma^\mu - \frac{\sigma^{\mu\nu}q_\nu}{M_W} (g_L P_L + g_R P_R) \right] u_t(p_t)\epsilon^*_\mu(q_L P_L + q_R P_R) dt_t$$

In SM, the effects are dominated by QCD corrections.

$$g_L = -(1.247 + 0.002747i)10^{-3}, g_R = -(8.6 + 2.05i)10^{-3}$$

 $V_L = -0.0296 + 0.0119i$, $V_R = (2.911 + 0.9) \times 10^{-3}$

• We evaluate ΔO_i with LHC constraints

$$\Delta \mathcal{O}_i = \frac{\mathcal{O}_i^{2HDM} - \mathcal{O}_i^{SM}}{\mathcal{O}_i^{SM}} \quad , \quad \mathcal{O}_i = \mathsf{Re}(g_L), \mathsf{Re}(g_R), \mathsf{Re}(V_R), V_{tb} + \mathsf{Re}(V_L)$$

preliminary Results

Relative contribution to the tbW tensorial coupling g_L in type-I (left) and type-II THDM (right)

Ongoing activities (cont.)

- 3. Radiative corrections to $h \rightarrow b\overline{b}$ and $h \rightarrow \tau^+ \tau^-$ in 2HDM.
- We use on-shell scheme for determination of the counterterms,
- The field renormalization constants for the two Higgs doublets are determined in the \overline{MS} scheme.

Preliminary, Decoupling limit $\cos(\beta - \alpha) = 0$

eft) $\Delta{bb}(\%)$, (right) $\Delta_{ au^+ au^-}(\%)$ in the plane (M_{H^+},m_{12}^2) in 2HDM2

Preliminary, $(\cos(\beta - \alpha), \tan\beta)$

Left) $\Delta_{bb}(\%)$, (right) $\Delta_{\tau^-\tau^-}(\%)$ in the plane $(\cos(\beta - \alpha), \tan\beta)$ in 2HDM2

Yukawa Lagrangian

$$\mathcal{L}_{Y} = \bar{u}_{Li} \left(\frac{\cos \alpha}{\sin \beta} \frac{m_{u_{i}}}{v} \delta_{ij} - \frac{\cos(\beta - \alpha)}{\sqrt{2} \sin \beta} X_{ij}^{u} \right) u_{Rj}h$$

$$+ \bar{d}_{Li} \left(-\frac{\sin \alpha}{\cos \beta} \frac{m_{d_{i}}}{v} \delta_{ij} + \frac{\cos(\beta - \alpha)}{\sqrt{2} \cos \beta} X_{ij}^{d} \right) d_{Rj}h$$

$$+ \bar{u}_{Li} \left(\frac{\sin \alpha}{\sin \beta} \frac{m_{u_{i}}}{v} \delta_{ij} + \frac{\sin(\beta - \alpha)}{\sqrt{2} \sin \beta} X_{ij}^{u} \right) u_{Rj}H$$

$$+ \bar{d}_{Li} \left(\frac{\cos \alpha}{\cos \beta} \frac{m_{d_{i}}}{v} \delta_{ij} - \frac{\sin(\beta - \alpha)}{\sqrt{2} \cos \beta} X_{ij}^{d} \right) d_{Rj}H$$

$$- i\bar{u}_{Li} \left(\frac{1}{\tan \beta} \frac{m_{u_{i}}}{v} \delta_{ij} - \frac{X_{ij}^{u}}{\sqrt{2} \sin \beta} \right) u_{Rj}A$$

$$+ i\bar{d}_{Li} \left(-\tan \beta \frac{m_{d_{i}}}{v} \delta_{ij} + \frac{X_{ij}^{d}}{\sqrt{2} \cos \beta} \right) d_{Rj}A + h.c$$

,