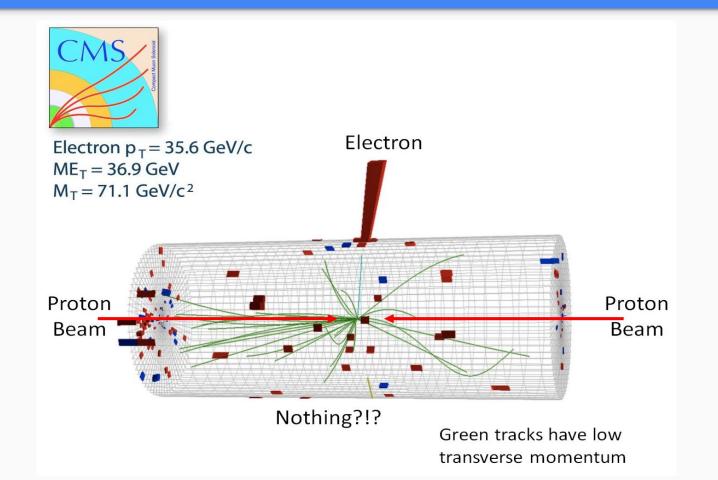
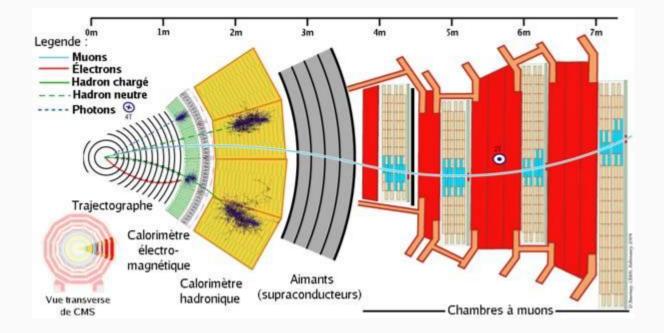

Dark Matter Mono-Photons


Preliminary Results from CMSDASia 2016

Overview


- Physics Motivation
- Analysis Strategy
- Event Selection (Trigger, Photon ID, Lepton Veto...)
- MC vs DATA vs Signal
- Systematics and Limits using Combine

Signature: Photon + MET

CMS Detector

- 1.) Determine the Trigger needed
- 2.) Apply Medium Photon ID developed by egamma group (maintains good signal efficiency)
- 3.) Apply Lepton Veto (reject events with muon or electron satisfying IDs)
- 4.) Other Cuts
- 5.) MC + Data + Signal Comparison
- 6.) Limits Signal

-HLT_Photon175

-HLT_Photon165_HE10

Irreducible

Z+gamma

<u>Reducible</u>

W+jets Z+jets QCD multijets W+gamma QCDmultijets + gamma Z+W gamma + jets

How to kill our enemy?

channel	method
Z+gamma	cannot reduce (Through MC study)
Z+jet	photon ID
W+jet	photon ID
QCD	photon ID
photon + jets	MET
W + gamma (e nu gamma, mu nu gamma)	lepton (electron/muon) veto

- Cuts photon Photon ID
 - PT > 175 GeV
 - Photon_SuperCluster_Eta

Barrel	Endcap

- Cuts

MET(Missing Transverse Energy)

- pfMET > 140 GeV
- delta Phi (gamma, MET) > 2

- Cuts

Lepton Veto

- pfMET > 140 GeV
- delta Phi (gamma, MET) > 2

From these MC samples, we can estimate the background by stack events.

-Z Nu Nu G Jets-MonoPhoton -W G Jets-MonoPhoton -Z L L G Jets-MonoPhoton -W To Tau Nu -W To Mu Nu -G jets (G is gamma simbol here)

Estimate how many events passed conditions, for sum of MC

- 1) trigger
- 2) photon
- 3) MET
- 4) delta R
- 5) Lepton veto

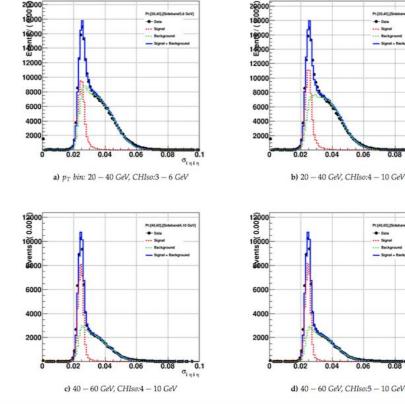
Pileup Generation Mechanism

-start with chosen input distribution

Pileup reweighing

-Match the MC distribution to the data distribution

Pileup mitigation


-remove the effect of pileup from physical analysis and object

In the end, stack the plots for comparison. using THStack.

But!

MC cannot really describe the data for high pT. -Irreducible background cannot be eliminated fro We could however do something about the reduc

Example, we use the template method to estimate the photon fake rate for both the barrel and the end caps.

Pt (20.40) Sideband4.10 GeV

- Dete

· · · · Signal

0.06

0.06

Backgroup

- Sinnal - Backs

0.08

Pt (40.50) (Sideband). 10 GeV

Background

- Signal - Backpround

0.08

Ginin

- Date

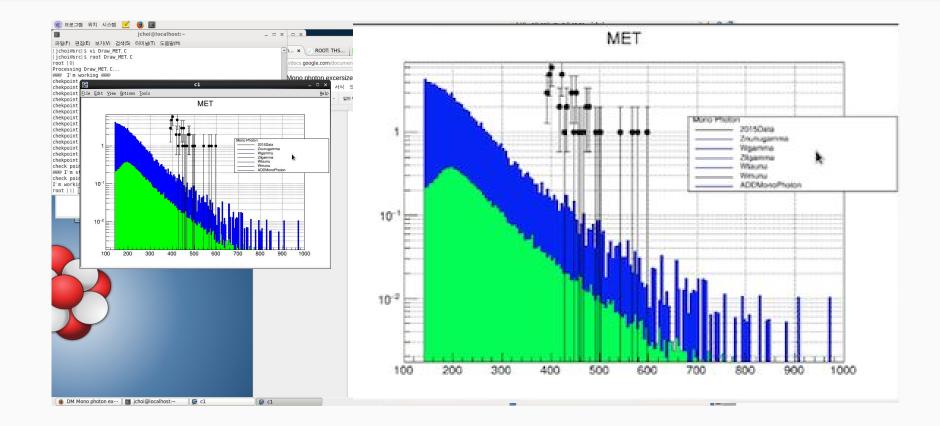
 $\sigma_{i\eta i\eta}$

Signal template

good control sample: Z -> mumu + gamma (constrained to low pT from 10~30TeV)

For high pT: we trust MC signal template (gamma in data = gamma MC x (e in data/e in MC)) (e in data/e in MC : using Z -> e + e)

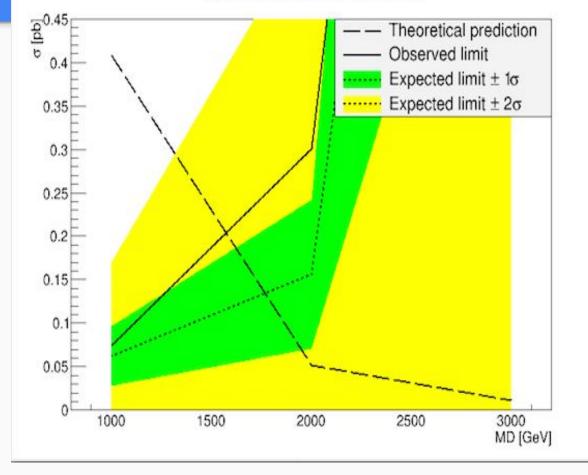
Background template


side band(SB) = background rich region

within the signal region: Find the sgnal/ background ratio

MC/Data Comparison - Systematics

- Hardware
- Method uncertainties


Preliminary Result

Future Work

*FIX LIMITS PLOT!!! *Systematic Uncertainty *e-gamma Fake Rate *gamma Fake Rate (MVA Template)

CMS preliminary (13TeV)

