CMSDAS 2016 VH→Vbb

Gregorio Iii Tabbu De Leon [National Central University]
Henry Yee-Shian Tong [National Central University]
You-Ying Li [National Taiwan University]
YU PAGE [National Taiwan University]
Arnaud Steen [National Taiwan University]
Chi-Chun Hsu [National Taiwan University] (TA)
Lei Wang [Peking University

OUTLINE

- Motivation, context in CMS and previous experiment
- VHbb topology
- Strategy / Selection
- FOM Method
- Background estimation
- Results

Why bb⁻?

BR(H \rightarrow bb̄) ~ 58% BR(H \rightarrow WW) ~ 22% BR(H \rightarrow TT) ~ 6% BR(H \rightarrow ZZ*) ~ 3% BR(H \rightarrow YY) ~ 0.22%

Search strategy VH(bb)

Search strategy targeted final states

- □ W(muv)H(bb)
- H mass window
- 1 isolated lepton
- 2 b-tagged jets
 2 isolated
- additional

- Z(ee)H(bb)
- Z mass window
- H mass window
 - lepton

- Z(mm)H(bb)
- Z mass window
- H mass window
- 2 isolated lepton

Analysis Strategy

- Cut and count
 - Select H mass window
 - Highly boosted V
 - Count data events versus scaled MC background
 - Used "combine" tool to determine limits and significance
- Background estimation
 - Select control region
 - Scale background to data

Mjj Analysis, cut and count

Main ingredients:

- → Boosted

- → b-tagging→ Topology→ QCD rejection

Variable	$\mathrm{W}(\ell u)\mathrm{H}$	$Z(\ell\ell)H$	$Z(\nu\nu)H$
$m_{\ell\ell}$	-	$75 < m_{\ell\ell} < 105$	_
$p_T(j_1),p_T(j_2)$	> 30, > 30	> 20, > 20	> 60 > 30
$p_T(jj)$	> 100	-	> 110
$n_{T}(\ell)$	> 30	> 20	
$p_T(V)$	> 150 (e) > 180 (μ)	> 150	> 170
$CSV(j_1), CSV(j_2)$	CSVT, > 0.5	CSVM, > 0.5	CSVT, > 0.5
$\Delta\phi({ m V,H})$	> 2.95	-	> 2.95
$\Delta R(\mathrm{jj})$	_	< 1.6	_
$N_{ m aj}$	=0	-	=0
$N_{ m al}$	=0	_	= 0
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 45	< 60.	-
$\Delta\phi(\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}},\mathrm{jet})$	-	-	> 0.5
$\Delta \phi(\mathrm{E_{T}^{miss}},\mathrm{trkMET})$	-	-	< 0.5
$\Delta\phi(\mathrm{E_{T}^{miss}, lep})$	$<\pi/2$	_	_

Cuts optimized according to the following Figure Of Merit (FoM): $S/(n_{s}/2+\sqrt{(B)}+\Delta B)$, where $n_{s}=3$

Channel cut

	ZH->eebb	ZH->mmbb	WH->mnbb
Vpt	80	150	150
Hpt	110	0	120
maxCSV	0.898	0.9	0.82
minCSV	0.5	0.4	0.55
dPhi	2.98	2.9	2.96

FOM

Weight factor = 1

 $^{\circ}$ S/(sqrt(B)+a/2+0.2B)

Background Estimation: Control Region

- Monte Carlo needs to be scaled to the data
- Major backgrounds that must be scaled
- $Z \rightarrow II$: Z plus light jets, Z plus heavy jets, ttbar
- W → lv: W plus light jets, W plus heavy jets, ttbar
- $Z \rightarrow vv$: Z plus light jets, W plus light jets, ttbar
- Each of these channels were scaled individual by making appropriate
- cut inversions to enter a control region
- Example: Looking at the $Z \rightarrow II Z$ plus light jets control region
- Invert the CSV btag requirement to exclude the heavy jets
- Additional exclude events with more than one additional jet

Sideband & Unblinded Result W(muv)H(bb)

BACKUP

Scale Factors

channel	W+LF	W+HF	Z+LF	Z+HF	TTbar
Z(ee)H(bb)			1.98	1.27	9.73
Z(μμ)H(bb)			2.01	0.8446	0.9236
W(μν)H(bb)	1.4615	2.9895			9.5582