The black hole information paradox

and
the fate of the infalling observer

Kyriakos Papadodimas

CERN TH-seminar, 02 December 2015

Schwarzschild solution (1916)

$$
d s^{2}=-\left(1-\frac{2 G M}{r}\right) d t^{2}+\left(1-\frac{2 G M}{r}\right)^{-1} d r^{2}+r^{2} d \Omega^{2}
$$

Mysterious and fascinating objects in our Universe

Black Holes and puzzles of Quantum Gravity

- S-matrix including BH intermediate states
- Entropy-Area, $S=\frac{A}{4 G}$, (UV/IR)
- BH Singularity
- Nature of horizon
- Information paradox

Do we need new physics?

- Modifications of effective field theory at large scales?
- Modifications of Quantum Mechanics in interior?
- Holography and emergence of spacetime

General Relativity: Equivalence Principle, black hole horizon is smooth

Quantum Mechanics: Unitarity, no information loss
Hawking: black holes evaporate
Conflict: Black hole information paradox, "firewall" paradox
Propose a possible way out? (based on work with S.Raju)

Basic info paradox

Hawking computation predicts thermal radiation

Photons thermal and independent (no correlations)

$$
\begin{equation*}
|\Psi\rangle_{\text {star }} \Rightarrow \rho_{\text {thermal }} \tag{*}
\end{equation*}
$$

Information Loss?

In Quantum Mechanics time evolution is Unitary

$$
|\Psi\rangle_{\text {final }}=e^{-i H t}|\Psi\rangle_{\text {initial }}
$$

Inconsistent with (*).

Normal "burning"

Radiation appears to be thermal

Small correlations between photons (of size e^{-S})

Accurate measurement of correlations \Rightarrow full information of initial state

No information loss problem

Resolution of basic version of info paradox

\exists quantum corrections to Hawking's computation
$e^{-S_{B H}}$ deviations from Hawking's predictions for simple observables (example: 2-point correlations between photons)
\Rightarrow sufficient to restore unitarity

Star
Reminder: for solar mass BH $S_{B H} \approx 10^{77}$

Compare outgoing radiation

Hawking
$\Rightarrow \rho_{\text {thermal }}$

Hawking + "corrections"

$$
\Rightarrow|\Psi\rangle_{\text {pure }}
$$

How different does radiation look?

Pure vs Mixed states

$$
\begin{aligned}
|\Psi\rangle & =\sum_{i}^{N} c_{i}\left|E_{i}\right\rangle \quad \text { vs } \quad \rho_{\text {micro }}=\frac{1}{N} \mathrm{I} \\
N & =e^{S}=\text { number of eigenstates } \gg 1
\end{aligned}
$$

Theorem: In a large quantum system, for most pure states, and simple observables A, we have

$$
\langle\Psi| A|\Psi\rangle=\operatorname{Tr}\left(\rho_{\text {micro }} A\right)+O\left(e^{-S}\right)
$$

Pure vs Mixed states

$$
\begin{aligned}
|\Psi\rangle & =\sum_{i}^{N} c_{i}\left|E_{i}\right\rangle \quad \text { vs } \quad \rho_{\text {micro }}=\frac{1}{N} \mathrm{I} \\
N & =e^{S}=\text { number of eigenstates } \gg 1
\end{aligned}
$$

Theorem: In a large quantum system, for most pure states, and simple observables A, we have

$$
\langle\Psi| A|\Psi\rangle=\operatorname{Tr}\left(\rho_{\text {micro }} A\right)+O\left(e^{-S}\right)
$$

(not true for complicated observables $n \approx S$)

$$
\langle\Psi| A_{1} \ldots A_{n}|\Psi\rangle=\operatorname{Tr}\left(\rho_{\text {micro }} A_{1} \ldots A_{n}\right)+O\left(e^{-(S-n)}\right)
$$

[S.Lloyd]
Define $\langle A\rangle_{\text {micro }}=\operatorname{Tr}\left(\rho_{\text {micro }} A\right)$
We also define the average over pure states in \mathcal{H}_{E}

$$
\overline{\langle\Psi| A|\Psi\rangle} \equiv \int\left[d \mu_{\Psi}\right]\langle\Psi| A|\Psi\rangle
$$

where $\left[d \mu_{\Psi}\right]$ is the Haar measure. Then for any observable A we have

$$
\overline{\langle\Psi| A|\Psi\rangle}=\langle A\rangle_{\text {micro }}
$$

and
variance $\equiv \overline{\left(\langle\Psi| A|\Psi\rangle^{2}\right)}-(\overline{\langle\Psi| A|\Psi\rangle})^{2}=\frac{1}{e^{S}+1}\left(\left\langle A^{2}\right\rangle_{\text {micro }}-\left(\langle A\rangle_{\text {micro }}\right)^{2}\right)$
" reasonable" observables have the same expectation value in most pure states, up to exponentially small corrections.

Compare outgoing radiation

$\rho_{\text {thermal }}$

Small number of photons \Rightarrow Predictions agree up to $O\left(e^{-S_{B H}}\right)$
Need to measure correlator between $S_{B H}$ photons to get info
Hawking computation reliable for simple observables

Comments

- Basic version of info paradox, where we only talk about radiation at infinity, can in principle be resolved: Hawking predicts thermal radiation. Exponentially small deviations $e^{-S_{B H}}$ to simple observables can restore unitarity
- We do not know how to calculate these corrections, but we do expect them on general grounds so there is no paradox.
- Computing these corrections, and understanding the microscopic mechanism of information transfer is a bigger problem (S-matrix of Quantum Gravity) but is not really a "paradox"
- So far we have not said anything about the BH interior...

Modern info paradox, infalling observer

Curvature at horizon

$$
R^{2} \sim \frac{1}{(G M)^{4}}
$$

General Relativity/Equivalence Principle, predicts:
free fall through horizon \Rightarrow will not notice anything

What if we include Quantum Mechanics?

Problem with Entanglement
Dramatic modification of horizon/interior?

Entanglement Reminder

Two sub-systems A, B then

$$
\mathcal{H}_{\text {full }}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}
$$

Typical state $|\Psi\rangle=\sum_{i j} c_{i j}|i\rangle_{A} \otimes|j\rangle_{B}$ does not factorize $="$ is entangled"

Example: two spins

Non-entangled state

$$
\begin{aligned}
& \text { Entangled state (EPR) } \\
& |\Psi\rangle=\frac{|\uparrow\rangle_{A} \otimes|\uparrow\rangle_{B}+|\downarrow\rangle_{A} \otimes|\downarrow\rangle_{B}}{\sqrt{2}}
\end{aligned}
$$

Ground state of QFT is entangled

$$
\langle\phi(0, x) \phi(0, y)\rangle=\frac{1}{|x-y|^{2}}
$$

Smooth spacetime needs entanglement

Rindler Horizon excited

Monogamy of entanglement

A, B, C independent systems

Monogamy of entanglement

A, B, C independent systems
Strong subadditivity of Entanglement Entropy

$$
S_{A B}+S_{B C} \geq S_{A}+S_{C}
$$

Hawking pair production

Particles of each pair highly entangled

Entanglement required for smoothness of horizon

Star

Modern info Paradox

Mathur [2009], Almheiri, Marolf, Polchinski, Sully (AMPS) [2012]

General Relativity: smooth horizon, B entangled with C

Quantum Mechanics: information preserved, B entangled with A
B violates monogamy?
Mathur's theorem: small corrections cannot fix the problem (?)

Which one survives, Unitarity or Smooth Horizon?

Giving up B-C entanglement?
Firewall, fuzball proposals $\Rightarrow\left\langle T_{\mu \nu}\right\rangle$ at horizon is very large, BH interior geometry is completely modified (maybe no interior at all)

Infalling observer "burns" upon impact on the horizon.

Dramatic modification of General Relativity/Effective Field Theory over macroscopic scales, due to quantum effects

Chaos vs entanglement

Black Holes are Chaotic Quantum Systems

How can typical states have specific entanglement between B, C which is needed for smoothness?

Correct entanglement fragile under perturbations due to chaotic nature of system [Shenker, Stanford]

Summary

- The modern version of the info paradox, is intimately related to the smoothness of the horizon and to what happens to the infalling observer.
- We have a conflict between QM and General Relativity because it seems impossible to have the entanglement of quantum fields, needed for smoothness, near the horizon.
- Is there a way out?

AdS/CFT

- AdS/CFT: non-perturbative definition of Quantum Gravity by dual gauge theory
- Black Holes in AdS \Leftrightarrow Quark-Gluon-Plasma states in QFT
- BH formation + evaporation \Leftrightarrow deconfinement + hadronization
- Very strong argument in favor of Unitarity

Non-perturbative Black Hole S-matrix encoded in CFT correlators
Manifestly Unitary

Black Hole interior in AdS/CFT?

Suppose we completely solve the CFT (know all correlators exactly)
How do we reconstruct the black hole interior?
Well-defined question, conceptual/mathematical framework missing?

What computation do we have to do?

- AdS/CFT successful for certain black hole questions
- Until recently, understanding of BH interior was limited
- In last few years we developed a framework for the holographic description of the BH interior [K.P. and S. Raju] based on JHEP 1310 (2013) 212, PRL 112 (2014) 5, Phys.Rev. D89 (2014), PRL 115 (2015)
- We identified CFT operators relevant for BH interior
- Seems to resolve the tension of entanglement in modern version of the info paradox
- It is important to make further checks and to expand into a complete mathematical framework

Local observables in AdS

$\mathcal{O}=$ local CFT operator
$K=$ known kernel

Local observables in AdS

$\mathcal{O}=$ local CFT operator
$K=$ known kernel

Locality in bulk is approximate:

1. True in $1 / N$ perturbation theory
2. $\left[\phi\left(P_{1}\right), \phi\left(P_{2}\right)\right]=0$ only up to $e^{-N^{2}}$ accuracy
3. Locality may break down for high-point functions

For smooth horizon effective field theory requires:
$\begin{array}{ll}\text { I) } \widetilde{b} \text { commute with } b & \text { AND } \\ \text { II) } \tilde{b} \text { entangled with } b\end{array}$
$\begin{array}{ccc}\stackrel{b}{b} & \Leftrightarrow & \mathcal{O} \\ & \Leftrightarrow & ?\end{array}$
Which CFT operators $\widetilde{\mathcal{O}}$ correspond to \widetilde{b} ?

- Smoothness of BH horizon and existence of interior, translated into concrete mathematical problem: can we find CFT operators $\widetilde{\mathcal{O}}$ with desired properties.
i) for every single trace operator \mathcal{O} there is a $\widetilde{\mathcal{O}}$
ii) \mathcal{O} 's and $\widetilde{\mathcal{O}}$'s must commute
ii) \mathcal{O} 's and $\widetilde{\mathcal{O}}$'s must be entangled
- We verified the existence of such operators
- Interesting property: state-dependence.

Small algebra of observables

EFT operators in bulk correspond to a small sector of boundary CFT operators (low Δ). They form small algebra

$$
\mathcal{A} \equiv \operatorname{span}\left[\mathcal{O}\left(x_{1}\right), \mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right), \ldots\right]
$$

The algebra \mathcal{A} acts on the state $|\Psi\rangle$ of the system. If $|\Psi\rangle$ is a BH microstate, we have nontrivial property

$$
A|\Psi\rangle \neq 0 \quad \forall A \in \mathcal{A}, A \neq 0
$$

Physically this means that the state seems to be entangled when probed by the algebra \mathcal{A}.

Whatever it is entangled with, corresponds to the operators $\widetilde{\mathcal{O}}$

Tomita-Takesaki modular theory

Algebra, cannot annihilate state.
\Rightarrow the representation of the algebra is reducible, and the algebra has a nontrivial commutant acting on the same space.

Define antilinear map

$$
S A|\Psi\rangle=A^{\dagger}|\Psi\rangle
$$

and

$$
\Delta=S^{\dagger} S \quad J=S \Delta^{-1 / 2}
$$

Then the operators

$$
\widetilde{O}=J O J
$$

i) commute with \mathcal{O}
ii) are correctly entangled with \mathcal{O}

These are the operators that we need for the Black Hole interior.

The operator Δ is a positive, hermitian operator and can be written as

$$
\Delta=e^{-K}
$$

where

$$
K=\text { "modular Hamiltonian" }
$$

For entangled bipartite system $A \times B$ this construction would give $K_{A} \sim \log \left(\rho_{A}\right)$ i.e. the usual modular Hamiltonian for A.

In the large N gauge theory and using the KMS condition for correlators of single-trace operators we find that for equilibrium states

$$
K=\beta\left(H_{C F T}-E_{0}\right)
$$

$$
\begin{gathered}
\widetilde{\mathcal{O}}_{\omega}|\Psi\rangle=e^{-\frac{\beta \omega}{2}} \mathcal{O}_{\omega}^{\dagger}|\Psi\rangle \\
\widetilde{\mathcal{O}}_{\omega} \mathcal{O} \ldots \mathcal{O}|\Psi\rangle=\mathcal{O} \ldots \mathcal{O} \widetilde{\mathcal{O}}_{\omega}|\Psi\rangle
\end{gathered}
$$

$$
\left[H, \widetilde{\mathcal{O}}_{\omega}\right] \mathcal{O} \ldots \mathcal{O}|\Psi\rangle=\omega \widetilde{\mathcal{O}}_{\omega} \mathcal{O} \ldots \mathcal{O}|\Psi\rangle
$$

Bulk field inside BH

$$
\phi(t, r, \Omega)=\int_{0}^{\infty} d \omega\left[\mathcal{O}_{\omega} f_{\omega}(t, \Omega, r)+\widetilde{\mathcal{O}}_{\omega} g_{\omega}(t, \Omega, r)+\text { h.c. }\right]
$$

Correlation functions of these operators

$$
\langle\Psi| \phi\left(t_{1}, r_{1}, \Omega_{1}\right) \ldots \phi\left(t_{n}, r_{n}, \Omega_{n}\right)|\Psi\rangle
$$

reproduce those of effective field theory in the exterior/interior of the black hole

AdS/CFT: Smooth spacetime at the horizon, no firewall

At the same time, Unitarity OK

We saved Unitarity + Equivalence Principle !

What about previous paradoxes?

Non-locality

$[\mathcal{O}, \widetilde{\mathcal{O}}] \approx 0$ in simple correlators
Operators $\widetilde{\mathcal{O}}=$ complicated combinations of \mathcal{O}

$$
[\phi(P), \phi(Q)]=O\left(e^{-S}\right)
$$

Hilbert space of Quantum Gravity: $\overline{\mathcal{H}_{\text {inside }}} \mathcal{H}_{\text {outside }}$
Solves problem of Monogamy of Entanglement
Concrete realization of "Black Hole Complementarity", consistent with EFT

State-dependence

- Interior operators defined by

$$
\begin{gathered}
\widetilde{\mathcal{O}}_{\omega}|\Psi\rangle=e^{-\frac{\beta \omega}{2}} \mathcal{O}_{\omega}^{\dagger}|\Psi\rangle \\
\widetilde{\mathcal{O}}_{\omega} \mathcal{O} \ldots \mathcal{O}|\Psi\rangle=\mathcal{O} \ldots \mathcal{O} \widetilde{\mathcal{O}}_{\omega}|\Psi\rangle
\end{gathered}
$$

- Solution depends on reference state $|\Psi\rangle$
- Operators cannot be upgraded to "globally defined" operators
- Solves Chaos vs Entanglement problem
- Unusual in Quantum Mechanics, needs further study
"Derivation" of ER $=E P R$ [K.P and S.R. (1503.08825)]

Entanglement \& Wormholes (Maldacena, Susskind, Raamsdonk)

$$
\begin{gathered}
H=H_{L}+H_{R} \\
|\mathrm{TFD}\rangle=\sum_{E} \frac{e^{-\beta E / 2}}{\sqrt{Z}}|E\rangle_{L} \otimes|E\rangle_{R}
\end{gathered}
$$

Time-shifted wormholes
[K.P and S.R. (1502.06692)]

$$
\left|\Psi_{T}\right\rangle \equiv e^{i H_{L} T}|\mathrm{TFD}\rangle
$$

Strong evidence in favor of state-dependence

Thermalization in gauge theories

A class of "quasi-equilibrium" states

$$
\left|\Psi^{\prime}\right\rangle=U(\tilde{\mathcal{O}})|\Psi\rangle=e^{-\frac{\beta H}{2}} U(O) e^{\frac{\beta H}{2}}|\Psi\rangle
$$

Outlook

Things to understand:

- Resolve certain subtleties
- $1 / N$ corrections
- Thermalization, real time
- Time evolution + measurement behind horizon
- Singularity

Summary

- The modern version of the info paradox has to do with entanglement at the horizon
- State-dependence may be able to resolve the problem
- Proposal for holographic reconstruction of BH interior, important to develop further.

THANK YOU

