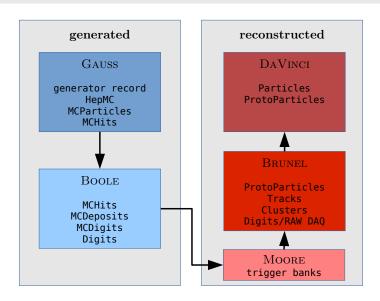
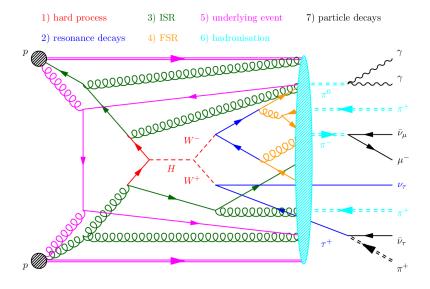
LHCb Monte Carlo Overview

Philip Ilten on behalf of the LHCb Simulation Group

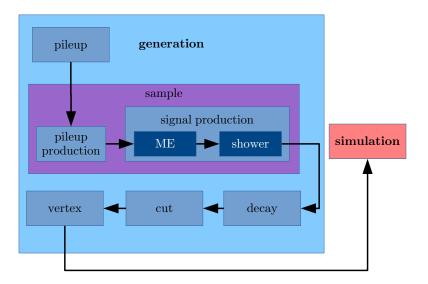
Massachusetts Institute of Technology


November 9, 2015

LHC Heavy Flavor Working Group


Overview

- LHCb **designed** as dedicated b-physics experiment
- simulation framework built with b-physics emphasis in mind
 - full modeling of decays, e.g. EVTGEN
 - complete detector description with Geant4
 - automation to handle large number of signal decay requests
 - well tuned underlying event for reliable soft physics
 - efficient use of minimum bias events for signal extraction
- LHCb **expanded** its physics program considerably
- Monte Carlo needs have broadened
 - dedicated central exclusive production generators
 - inclusion of heavy ion models
 - control over matrix element matching and merging with showers
 - alternative general-purpose generators for hadronization, etc.


Data Model

Event Anatomy

Gauss

Tools

Beam, Vertex, and Pileup

- beam tool handles all beam related parameters, except PDFs
- vertex tool smears the vertex for each interaction
 - beam spot: sample position from 3D Gaussian distribution
 - flat smear, smear from histogram, etc.
- **pileup tool** controls number of interactions per event, n
 - fixed luminosity: sample n with $P(n,\nu) = \nu^n e^{-\nu}/n!$

$$\nu = \frac{\mathcal{L}\sigma}{f}$$

• variable luminosity: same as fixed, but exponentially decrease ν

$$\nu = \frac{\mathcal{L}\sigma}{f} \frac{t_{\text{fill}}}{t_{\text{beam}} (1 - e^{-t_{\text{fill}}/t_{\text{beam}}})}$$

- fixed interactions: always generate the same n, typically 1
- rare process: use fixed luminosity but return n+1

Sample Generation

- sample generation tool generates interactions for an event using production tool(s)
 - minimum bias: generates and accepts all minimum bias interactions
 - inclusive: minimum bias generation, but interactions are only accepted if requested particle types are produced, event flipped if signal $p_z < 0$
 - plain signal: like inclusive but decay particles heavier than the signal particle; continue until signal found and decay forced
 - forced fragmentation: generate signal decay and force fragmentation into this flavor
 - repeated hadronization: save event up to hadronization and re-hadronize until signal found
 - special: use signal configured production tool, e.g. $gg \to H \to b\bar{b}$ and separate minimum bias configured production tool to generate interactions

Production

- **production tool** produces single interactions from interface with an external generator
 - *multipurpose*: interfaces to generators that can produce full interactions, including underlying event, hard process, showers, and hadronization
 - Pythia 6, Pythia 8, Herwig++, Sherpa
 - hard process: only produces the hard process which must then be showered, hadronized, and integrated with underlying event
 - POWHEGBOX, GENXICC, BCVEGPY, ALPGEN, MADGRAPH
 - parton shower: takes an external hard process and showers, hadronizes, and include underlying event
 - Pythia 6, Pythia 8 . . . ideally all available multipurpose generators
 - exclusive: central exclusive production which only requires a hard process
 - SuperChic, LPair
 - heavy ion: interfaces to dedicated heavy ion generators
 - HiJing, CrMc

Decays and Cuts

- decay tool decays all remaining particles from the production tool, including requested signal
 - EvtGen: interface to the EVTGEN package with support for τ decays via Tauola, FSR via Photos, and additional decays via Pythia 8
 - multipurpose: multipurpose generators can perform resonance decays from hard processes with correlated final states, e.g. $gg \to H \to \tau\tau$
- **cut tool** checks if a generated event satisfies requirements
 - *signal decay*: requirements applied only to signal particle and its subsequent decay, *e.g.* signal in LHCb acceptance, all signal decay products in LHCb acceptance, *etc*.
 - full event: requirements on full event, e.g. require at least two b-partons, arbitrary particle requirements, etc.

Production

Primary Generator

- Pythia 6 was primary production tool, migrated to Pythia 8
- not all needed final states produced from hadronization
- double heavy baryon production handled with GenXicc
 - arXiv:hep-ph/0702054, arXiv:1210.3458
 - produces $gg \to X\bar{Q}\bar{Q}$, $gQ \to X\bar{Q}$, and $QQ \to Xg$
 - interfaced with Pythia 6 and Pythia 8 showers
- S-wave and P-wave B_c states produced with BcVegPy
 - hep-ph/0309120, hep-ph/0504017, 1307.3344
 - produces $qq \to Xc\bar{c}$
 - also interfaced with Pythia 6 and Pythia 8 showers
- required excited onia production integrated into Pythia 8.185 and beyond

Onia Production

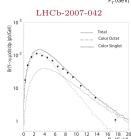
• onia production modeled with NRQCD

$$d\sigma(pp \to H + X) = \sum_{s,L,J} d\hat{\sigma}(pp \to Q\bar{Q}[^{2s+1}L_J] + x) \langle \mathcal{O}^H[^{2s+1}L_J] \rangle$$

- color-singlet and color-octet production for any
 - $Q\bar{Q}[^3S_1]$ state
 - $Q\bar{Q}[^3P_J]$ state
 - $Q\bar{Q}[^3D_J]$ state
- any radial excitation allowed
- default production (easily changed) now includes J/ψ , $\psi(2S)$, $\chi_{cJ}(1P)$, $\psi(3770)$, Υ , $\Upsilon(2S)$, $\Upsilon(3S)$, $\Upsilon(4S)$, $\chi_{bJ}(1P)$
- long-distance matrix elements are taken from
 - arXiv:hep-ph/0003142
 - arXiv:hep-ph/9807329 for $\langle \mathcal{O}^{Q\bar{Q}[^3D_J]}[^{2s+1}\ell_J] \rangle$
- double-onia production underway

Onia $p_{\rm T}$ Divergence

- perturbative short-distance matrix elements, $\hat{\sigma}$, diverge at low $p_{\rm T}$
 - smoothly re-weight


$$\left(\frac{p_{\rm T}^4}{p_{\rm T0}^2 + p_{\rm T}^2}\right) \left(\frac{\alpha_s (p_{\rm T0}^2 + p_{\rm T}^2)^2}{\alpha_s (p_{\rm T}^2)}\right)$$

• allow p_{T_0} to be energy dependent

$$p_{\mathrm{T}_0}(\sqrt{s}) = p_{\mathrm{T}_0}(E_0) \left(\frac{\sqrt{s}}{E_0}\right)^{\theta}$$

- LHCb-2007-042
- values set to MPI values

LHCb-2007-042 Total Color Singlet 10 10 2 4 6 8 10 12 14 16 18 20

Tuning

- LHCb pre-LHC tune used for PYTHIA 6 10.1109/NSSMIC.2010.5873949 (does not include LHC data)
- tuning campaign underway for Pythia 8, using Monash tune until complete
 - based on CT09MCS PDF set
 - total cross-section measurements from LHCb, CMS, ATLAS, and TOTEM
 - rapidity gaps from ATLAS
 - flavor composition with LHC V^0 , ϕ , and prompt hadron ratios
 - also utilize ATLAS and CMS K_S and Λ^0 measurements
 - LHCb, ATLAS, and CMS event multiplicity measurements used for underlying event
- tune will also be performed using 13 TeV dataset

Request Submission

- all MC via central production
- every job has *model* and *event* type
- decay file provides the event type configuration

- G: general type and production scheme
- S: initial state particles
- D: features of decay C: final charm hadrons and leptons
- T: stable charged particles
- N. neutrals
- X: same GSDCTN, decay degeneracy
- U: same GSDCTNX, model degeneracy

```
# EventType: GSDCTNXU
# Descriptor: {[[B0]nos -> mu+ mu- (K*(892)0
-> K+ pi-)]cc, ...}
```

- # NickName: Bd_Kstmumu,phsp=DecProdCut,MomCut
 # Cuts: DaughtersInLHCbAndWithMinP
- # Documentation, PhysicsWG, Tested #
 Responsible, Email, Date, CPUTime
 Alias MyK*0 K*0
- Alias Myanti-K*O anti-K*O ChargeConj Myanti-K*O MyK*O Decay BOsig
- 1.0 MyK*0 mu+ mu- PHSP; Enddecav
- CDecay anti-B0sig Decay MyK*0
- 1.0 K+ pi- PHSP; Enddecay
- CDecay Myanti-K*0 End

Conclusions

Outlook

- options for upgrade MC computing model under development
 - both CPU and storage limits will require changes
- filtered events with fully reconstructed signals introduced, saves space but not time
- multiple trigger conditions per event now stored, saves both time and space
- particle gun events used to produce specific backgrounds and signals, but has limited use
- fast MC techniques such as detector geometry simplification and parametrization underway
- less b-physics oriented developments also underway
 - central exclusive production and heavy ion generators
 - full MadGraph/AMC@NLO + FxFx chain
 - gridpack deployment for NLO calculations