Decay Properties: Overview & Prospects in CMS

Martino Margoni Universita` di Padova & INFN

Most relevant Run1 measurements to be pursued in Run2:

- BR(B_{s(d)} $\rightarrow \mu\mu$)
- $B^{\circ} \rightarrow K^* \mu \mu$ angular analysis
- Φ_s , $\Delta\Gamma_s$ from $B_s \rightarrow J/\psi \phi$

For each measurement:

- Analysis
- Breakdown of experimental errors in Run1
- Perspectives for Run2

Run 2 Projections & Challenges

- Back of envelope Run2 projection at CMS: $\sigma(\text{Run2}) \approx 2 \, \sigma(\text{Run1})$ $L(\text{Run2}) \approx 100/120 \, \text{fb}^{-1} \approx 5 \, L(\text{Run1})$
- Total sample (Run1 + Run2) = 11 x Run1
- Expect factor 3.3 improvement in statistical errors & systematic uncertainties scaling with statistics (...assuming the same analysis performance...)

But:

- Increased Pile-up: ~ 40 PU @ 13 TeV with $L=1.4 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- Trigger: stay within the Run1 bandwidth (L1=10 kHz \sim 10% of the total Bandwidth, HLT=100 Hz) despite the increase of a factor 4 in rate.
 - Trigger selection defined to reduce the rate without affecting too much the signal, path driven by specific analysis

2

$B \rightarrow \mu^{\dagger}\mu^{\bar{}}$

"Measurement of the B° $\rightarrow \mu^{+}\mu^{-}$ branching fraction and Search for B° $\rightarrow \mu^{+}\mu^{-}$ with the CMS Experiment" [L = 5 fb⁻¹ (\sqrt{S} =7 TeV)+20 fb⁻¹ (\sqrt{S} =8 TeV)] Phys. Rev. Lett. 111, 101804 (2013)

Signal: two isolated muons from a secondary vertex

Hardware Trigger:

 $P_{_{T}}(\mu) > 3 \text{ GeV (few kHz)}$

High Level Trigger 2011 (2012):

Central region ($|\eta|$ <1.8): $P_{\tau}(\mu)$ >4 (3) GeV,

 $P_{T}(\mu\mu) > 3.9 (4.9) \text{ GeV}, 4.8 < M(\mu\mu) < 6 \text{ GeV}$

Forward region (1.8< $|\eta|$ <2.2):

 $P_{_{T}}(\mu) > 4 \text{ GeV}, P_{_{T}}(\mu\mu) > 7, \text{ Prob}(VTX) > 0.5\%$

BKG:

- Combinatorial
- →Physical:
 - Uncorrelated B semileptonic decays
 - Peaking B → hh' (h=K, π) (BR~10⁻⁷/10⁻⁵)
 - Non Peaking B → hµv, B → hµµ, $\Lambda_b \rightarrow pµv$ evaluated normalized to $B^+ \rightarrow J/\psi K^+$

Strategy:

→BDT-based muon (Mis) identification studied on MC/data control samples $(B_{\epsilon} \to KK, B^{\circ} \to \pi \pi, K^{\circ} \to \pi \pi, \Lambda \to p\pi, D^{*} \to D^{\circ}\pi)$

$B \rightarrow \mu^{\dagger}\mu^{\tilde{}}$

Strategy:

- Events selected by means of a MVA exploiting kinematic, vertexing and isolation variables
- Measure event yields from an unbinned fit to M(μμ)
- ⇒ BR obtained relative to the normalization channel B^+ → K^+J/ψ to avoid systematics from cross section & luminosity, and reduce efficiency uncertainty:

$$B\left(B_{s}^{0}\rightarrow\mu^{+}\mu^{-}\right) = \frac{Y_{s}}{Y_{N}}\frac{\epsilon_{N}}{\epsilon_{s}}\frac{f_{U}}{f_{s}}B\left(B^{+}\rightarrow K^{+}J/\psi\rightarrow K^{+}\mu^{+}\mu^{-}\right)$$

$$Y_{s},Y_{N} \qquad \text{Signal and Normalization Yields} \qquad B(B^{+}) = (6.0\pm0.2)10^{-5}$$

$$\epsilon_{s},\epsilon_{N} \qquad \text{Signal and Normalization Efficiencies}$$

$$\frac{f_{s}}{f_{U}} = 0.256\pm0.020 \qquad \text{Ratio between B+ and B}^{\circ}_{s} \text{ fragmentation functions}$$

$$[LHCb, JHEP 04 (2013) 001]$$

→ Data/MC agreement checked on B_s → J/ ψ φ control sample

$B \rightarrow \mu^{\dagger}\mu^{\bar{}} : Results$

Results:

BR(B_s
$$\rightarrow \mu^{+}\mu^{-}$$
) = (3.0_{-0.8}^{+0.9} (stat)_{-0.4}^{+0.6} (syst) 10⁻⁹) (4.3 σ significance)
BR(B^o $\rightarrow \mu^{+}\mu^{-}$) <1.1 \times 10⁻⁹ @ 95% CL

Combination of BR(B $\rightarrow \mu\mu$) from the CMS and LHCb

- CMS Improvements wrt PRL:
 - Input $\tau(B_s)$, f_u/f_s & some BRs from PDG
 - Modeling of the $Λ_b$ → pμν Background [JHEP 09, 106; PLB 734, 122-130]

$$BR(B_s) = (2.8^{+1.1}_{-0.9}) \times 10^{-9}$$

$$BR(B_d) = (4.4^{+2.2}_{-1.9}) \times 10^{-10}$$

[Nature, 522 (2015) 69]

- Full Likelihood combination of CMS & LHCb results
 - Simultaneous unbinned extended maximum likelihood fit to the mass spectra
 - → Take into account correlations/estimate significance

$$BR(B_s) = (2.8^{+0.7}_{-0.6}) \times 10^{-9}$$

 $BR(B_d) = (3.9^{+1.6}_{-1.4}) \times 10^{-10}$

Systematic errors contribute 35% (18%) of the total for $B_s(B_d)$

7

Combination of BR(B $\rightarrow \mu\mu$) from the CMS and LHCb

- CMS Improvements wrt PRL:
 - \blacksquare Input $\tau(B_s)$, f/f & some BRs from PDG
 - Modeling of the Λ_b → pμν Background [JHEP 09, 106; PLB 734, 122-130]

$$BR(B_s) = (2.8^{+1.1}_{-0.9}) \times 10^{-9}$$

$$BR(B_d) = (4.4^{+2.2}_{-1.9}) \times 10^{-10}$$

[Nature, 522 (2015) 69]

- Full Likelihood combination of CMS & LHCb results
 - Simultaneous unbinned extended maximum likelihood fit to the mass spectra
 - → Take into account correlations/estimate significance

$$BR(B_s) = (2.8^{+0.7}_{-0.6}) \times 10^{-9}$$

 $BR(B_d) = (3.9^{+1.6}_{-1.4}) \times 10^{-10}$

Systematic errors contribute 35% (18%) of the total for $B_s(B_d)$

8

LHC Heavy Flavor WG Public Meeting, 10/11/2015

Breakdown of experimental errors (CMS analysis)

- Measurement dominated by statistical error: wait for new data!
- Main systematics:

$$f/f_1 = 0.259 \pm 0.015$$
 [LHCb-CONF-2013-011]

Muon misidentification w≈0.15%/0.22%

SL and rare decays: $\delta BR(\Lambda_b \rightarrow p\mu\nu) \sim 40\%$ [PLB 734, 122-130])

Normalization of SL and peaking BKG to $B^+ \rightarrow J/\psi K^+$ (largest syst err.)

$$N(Y \to X) = \frac{B(Y \to X)}{B(B^+ \to K^+ J/\psi)} \frac{\epsilon(X)}{\epsilon(B^+)} \frac{f_Y}{f_U} N(B^+ \to K^+ J/\psi)$$

Reducible adding more data

LHC Heavy Flavor WG Public Meeting, 10/11/2015

Analysis Improvements & Challenges for Run2

- Trigger (rare decays ~12% of BPH rate): Use low P_T unprescaled double-muon L1 seed (including muon charge, $|\Delta\eta|$ information), HLT cut on muons $P_T>4(3)$ GeV, use displaced J/ψ for the normalization channel
- Muon identification:

Further suppress misidentification to reduce peaking & SL BKG Study in-flight decays for control samples

- Selection
 - Study increased pile-up (spatial separation between PVs and track multiplicity)
 - Selection of peaking and rare semileptonic B decays for control samples
- Improve Fit method:
 - Move from a categorized 1D fit to $m_{\mu\mu}$ to a 2D (MVA, $m_{\mu\mu}$) one. Include nuisance parameters (fake rate, peaking BKG).

$B^{\circ} \rightarrow K^{*\circ} \mu^{+} \mu^{-}$

"Angular analysis of the decay $B^{\circ} \to K^{*\circ} \mu^{+} \mu^{-}$ from pp collisions at $\sqrt{S=8}$ TeV"

$$[L = 20.5 \, \text{fb}^{-1}]$$

Submitted to Phys. Lett. B

$B \rightarrow K^* \mu^+ \mu^-$

Differential Amplitude:

$$\begin{split} & \frac{1}{\Gamma} \frac{d^{3} \Gamma}{d \cos \theta_{K} d \cos \theta_{l} dq^{2}} \\ & = \frac{9}{16} \left\{ \left[\frac{2}{3} F_{S} + \frac{4}{3} A_{S} \cos \theta_{K} \right] (1 - \cos^{2} \theta_{l}) \right. \\ & + (1 - F_{S}) \left[2 F_{L} \cos^{2} \theta_{K} (1 - \cos^{2} \theta_{l}) \right. \\ & + \frac{1}{2} (1 - F_{L}) (1 - \cos^{2} \theta_{K}) (1 + \cos^{2} \theta_{l}) \\ & + \frac{4}{3} A_{FB} (1 - \cos^{2} \theta_{K}) \cos \theta_{l} \right] \right\}. \end{split}$$

- Kinematics of the decay $B \longrightarrow V \mu^{\dagger} \mu^{-}$ ($V = K^{*}, \varphi, \rho$) determined by three angles:
 - \bullet θ_1, θ_K, ϕ
- Event Yields reconstructed in bins of $q^2 = m^2(\mu^+\mu^-)$
- Observables Include:
 - Differential Branching Ratio dB/dq²
 - A_{FB} (forward-backward muon asymmetry)
 - F_L (fraction of longitudinally polarized K*)

12

$B \rightarrow K^* \mu^{\dagger} \mu^{-}$

Differential Amplitude:

$$\frac{1}{\Gamma} \frac{d^{3} \Gamma}{d \cos \theta_{K} d \cos \theta_{l} dq^{2}}$$

$$= \frac{9}{16} \left\{ \left[\frac{2}{3} F_{S} + \frac{4}{3} A_{S} \cos \theta_{K} \right] (1 - \cos^{2} \theta_{l}) + (1 - F_{S}) \left[2F_{L} \cos^{2} \theta_{K} (1 - \cos^{2} \theta_{l}) + \frac{1}{2} (1 - F_{L}) (1 - \cos^{2} \theta_{K}) (1 + \cos^{2} \theta_{l}) + \frac{4}{3} A_{FB} (1 - \cos^{2} \theta_{K}) \cos \theta_{l} \right] \right\}.$$

- Kinematics of the decay $B \longrightarrow V \mu^{\dagger} \mu^{-}$ ($V \approx K^{*}$, φ , ρ) determined by three angles:
 - \bullet θ_1, θ_K, ϕ
- Event Yields reconstructed in bins of $q^2 = m^2(\mu^+\mu^-)$
- F_s : Fraction of spinless $K\pi$ (S-wave) combination
- A_s: Interference amplitude between S-wave and P-wave decays

$B \rightarrow K^* \mu^+ \mu^-$

Strategy:

- Measure event yields, A_{FB} , F_L , F_s and A_s from an unbinned simultaneous fit to M(Kπμμ), $cos(\theta_K)$ and $cos(\theta_I)$ in bins of q^2
- → dB/dq² obtained relative to the normalization channel B° → K*J/ψ:

$$\frac{\mathrm{d}\mathcal{B}\left(\mathrm{B}^{0}\to\mathrm{K}^{*0}\mu^{+}\mu^{-}\right)}{\mathrm{d}q^{2}} = \left(\frac{Y_{S}^{C}}{\epsilon^{C}} + \frac{Y_{S}^{C}f^{M}}{(1-f^{M})\epsilon^{M}}\right)\left(\frac{Y_{N}^{C}}{\epsilon_{N}^{C}} + \frac{Y_{N}^{C}f_{N}^{M}}{(1-f_{N}^{M})\epsilon_{N}^{M}}\right)^{-1}\frac{\mathcal{B}\left(\mathrm{B}^{0}\to\mathrm{K}^{*0}\mathrm{J}/\psi\right)}{\Delta q^{2}}$$

S≈signal N≈normalization

Trigger: two OS muons ($P_T>3.5$ GeV, $|\mathbf{\eta}|<2.2$, $d_{xy}<2$ cm from beam axis) forming a displaced vertex. Dimuon: $P_T>6.9$ GeV, Prob(vtx)>10%, $L_{xy}/\sigma_{Lxy}>3$, cos(α)>0.9 [α =angle(P, flight direction)]

$B \rightarrow K^* \mu^+ \mu^-$

Strategy:

- Measure event yields, A_{FB} , F_L , F_s and A_s from an unbinned simultaneous fit to M(Kπμμ), $cos(\theta_K)$ and $cos(\theta_I)$ in bins of q^2
- dB/dq² obtained relative to the normalization channel B° → K*J/ψ:

$$\frac{\mathrm{d}\mathcal{B}\left(\mathsf{B}^{0}\to\mathsf{K}^{*0}\mu^{+}\mu^{-}\right)}{\mathrm{d}q^{2}} = \left(\frac{Y_{S}^{C}}{\epsilon^{C}} + \frac{Y_{S}^{C}f^{M}}{(1-f^{M})\epsilon^{M}}\right) \left(\frac{Y_{N}^{C}}{\epsilon_{N}^{C}} + \frac{Y_{N}^{C}f_{N}^{M}}{(1-f_{N}^{M})\epsilon_{N}^{M}}\right)^{-1} \frac{\mathcal{B}\left(\mathsf{B}^{0}\to\mathsf{K}^{*0}\mathsf{J}/\psi\right)}{\Delta q^{2}}$$

S≈signal N≈normalization

LHC Heavy Flavor WG Public Meeting, 10/11/2015

M.Margoni Universita` di Padova & INFN

$B \rightarrow K^* \mu^+ \mu^- Results$

Results consistent with SM

CMS Experimental errors
 comparable with theoretical for
 F_L and A_{FB}, smaller for dB/dq²

Measurement dominated by statistical error

LHC Heavy Flavor WG Public Meeting, 10/11/2015

M.Margoni Universita` di Padova & INFN

16

Breakdown of experimental errors

• Error range between the different q² bins

	Systematic uncertainty	$F_{\rm L}(10^{-3})$	$A_{\rm FB}(10^{-3})$	$d\mathcal{B}/dq^2$ (%)
	Simulation mismodeling	1–17	0-37	1.0-5.5
	Fit bias	0-34	2-42	_
—	MC statistical uncertainty	3-10	5-18	0.5-2.0
-	Efficiency	34	5	_
	$K\pi$ mistagging	1–4	0–7	0.1-4.1
	Background distribution	1-9	0–6	0.0-1.2
	Mass distribution	3	1	3.2
	Feed-through background	0-27	0–5	0.0 - 4.0
	Angular resolution	6-24	0–5	0.2 - 2.1
	Normalization to $B^0 \to K^{*0}J/\psi$	_		4.6
16	Total systematic uncertainty	36-54	10-68	6.4-8.6

- - : Systematics reducible with statistics increasing
- Main systematics:
- Closure test on simulation: MC <u>statistics</u>, Toy MC, fit on MC subsamples
- Efficiency computed on MC: error includes <u>statistics</u> and different functions choice. Efficiency dependence on angles and q^2 from the comparison of the fitted parameters on $B^0 \to K^* J/\psi$, $B^0 \to K^* \psi'$ with the PDG

Breakdown of experimental errors

• Error range between the different q² bins

	Systematic uncertainty	$F_{\rm L}(10^{-3})$	$A_{\rm FB}(10^{-3})$	$d\mathcal{B}/dq^2$ (%)
	Simulation mismodeling	1-17	0-37	1.0-5.5
	Fit bias	0-34	2-42	_
-	MC statistical uncertainty	3-10	5-18	0.5 - 2.0
-	Efficiency	34	5	_
	$K\pi$ mistagging	1-4	0-7	0.1 - 4.1
	Background distribution	1-9	0–6	0.0-1.2
-	Mass distribution	3	1	3.2
	Feed-through background	0–27	0–5	0.0-4.0
-	Angular resolution	6–24	0–5	0.2–2.1
	Normalization to $B^0 \to K^{*0}J/\psi$	_	_	4.6
	Total systematic uncertainty	36-54	10-68	6.4-8.6

- -> : Systematics reducible with statistics increasing
- Double-Gaussian mass distributions (different for correctly tagged and mistagged evts) fitted to data with widths constrained to MC, checked on control samples
- Feed-through error from fit in bins neighbour to the excluded resonances.
 Can be reduced by enlarging the vetoed resonances mass region
- Angular resolution effect from fit using generated vs reconstructed quantities

Analysis Improvements & Challenges for Run2

- Already ongoing on Run1 dataset:
 - Study of the P'₅
 parameterization as LHCb
 - Analysis of other channels:

$$B^+ \rightarrow K^{*+} \mu \mu$$
, $K^+ \mu \mu$, $(\Lambda_h \rightarrow \Lambda \mu \mu)$

• Future: include additional physics observables: Isospin & CP

Asymmetries
$$A_{\rm I} = \frac{\Gamma(B^0 \to K^{(*)0} \mu^+ \mu^-) - \Gamma(B^+ \to K^{(*)+} \mu^+ \mu^-)}{\Gamma(B^0 \to K^{(*)0} \mu^+ \mu^-) + \Gamma(B^+ \to K^{(*)+} \mu^+ \mu^-)}$$

$$\mathcal{A}_{CP} = \frac{\Gamma(\overline{B}{}^0 \to \overline{K}^{*0} \mu^+ \mu^-) - \Gamma(B^0 \to K^{*0} \mu^+ \mu^-)}{\Gamma(\overline{B}{}^0 \to \overline{K}^{*0} \mu^+ \mu^-) + \Gamma(B^0 \to K^{*0} \mu^+ \mu^-)}$$

19

Analysis Improvements & Challenges for Run2

- Trigger: low P_T muons are mandatory!
 - Rate reduced by a harder cut on each muon $P_T>4$ GeV (current analysis uses $P_T>3.5$ GeV) & including an additional displaced hadron track (cut on P_T and IP/σ), plus dimuon cuts on Prob(VTX), L_{xy}/σ_{Lxy} , cos(α)
 - Considering only the variation in the muon P_T cut from 3.5 GeV to 4 GeV, & assuming L=100 fb⁻¹@ 13 TeV:
 - ~10500 evts (to be compared with the ~1400 evts of the current statistics): enough for a full angular analysis with a statistical error reduction ~ 3

$B_s \rightarrow J/\Psi \phi$

"Measurement of the CP-violating weak phase Φ_s and the decay width difference $\Delta\Gamma_s$ using the $B_s \rightarrow J/\Psi \phi$ decay channel in pp collision at $\sqrt{S=8}$ TeV" [L = 19.7 fb⁻¹]

Submitted to Phys. Lett. B

$B_s \rightarrow J/\Psi \phi$

- Kinematics of the decay determined by three angles:
 - \bullet θ_{T} , ϕ_{T} , ψ_{T} in the transversity basis
- Differential decay rate

$$\frac{\mathrm{d}^4\Gamma(\mathrm{B}_\mathrm{s}^0)}{\mathrm{d}\Theta\,\mathrm{d}(ct)} = f(\Theta,\alpha,ct) \propto \sum_{i=1}^{10} O_i(\alpha,ct)\,g_i(\Theta).$$

 Time dependent angular analysis needed to disentangle CP-odd and CPevent eigenstates

$$O_i(\alpha, ct) = N_i e^{-ct/c\tau} \left[a_i \cosh\left(\frac{\Delta \Gamma_{\rm s} t}{2}\right) + b_i \sinh\left(\frac{\Delta \Gamma_{\rm s} t}{2}\right) + c_i \cos\left(\Delta m_{\rm s} t\right) + d_i \sin\left(\Delta m_{\rm s} t\right) \right]$$

 α =Physics parameters: $\Delta\Gamma$, Φ , ct, decay amplitudes and phases

• b, and d, depend on Φ,

$B_s \rightarrow J/\Psi \varphi$

- Strategy:
 - Exclusive reconstruction of events
 - Opposide-Side lepton flavor tagging of the B_s
 - → Multidimensional fit on $m(B_s)$, θ_T , ϕ_T , ψ_T , ct, δct
- $ω=30.17\pm0.24\pm0.05\%$ $ε=8.31\pm0.03\%$ $P=ε(1-2ω)^2$ $P=1.307\pm0.031\pm0.007\%$
- Trigger: two OS muons ($P_T>4$ GeV, $|\eta|<2.1$) forming a displaced vertex. Dimuon: $P_T>6.9$ GeV, DOCA_{µµ}(3D)<5cm, Prob(vtx)>10%, $L_{xy}/\sigma_{Lxy}>3$, cos(α)>0.9, 2.9<m($\mu\mu$)<3.3 GeV

LHC Heavy Flavor WG Public Meeting, 10/11/2015

M.Margoni Universita` di Padova & INFN

$B_s \rightarrow J/\Psi \phi$ Results

Breakdown of experimental errors

Source of uncertainty	ϕ_s [rad]	$\Delta\Gamma_s$ [ps ⁻¹]	$ A_0 ^2$	$ A_S ^2$	$ A_{\perp} ^2$	δ_{\parallel} [rad]	$\delta_{S\perp}$ [rad]	δ_{\perp} [rad]	<i>cτ</i> [μm]
ct efficiency	0.002	0.0057	0.0015	_	0.0023	_	_	_	1.0
Angular efficiency	0.016	0.0021	0.0060	0.008	0.0104	0.674	0.14	0.66	0.8
Kaon p_T weighting	0.014	0.0015	0.0094	0.020	0.0041	0.085	0.11	0.02	1.1
ct resolution	0.006	0.0021	0.0009	_	0.0008	0.004	-	0.02	2.9
Flavour tagging	0.003	0.0003	_	_	_	0.006	0.02	_	
Model bias	0.015	0.0012	0.0008	_	_	0.025	0.03	-	0.4
Mistag distribution modelling	0.004	0.0003	0.0006	_		0.008	0.01	-	0.1
pdf modelling assumptions	0.006	0.0021	0.0016	0.002	0.0021	0.010	0.03	0.04	0.2
$ \lambda $ as a free parameter	0.015	0.0003	0.0001	0.005	0.0001	0.002	0.01	0.03	_
Total systematic uncertainty	0.031	0.0070	0.0114	0.022	0.0116	0.680	0.18	0.66	3.4
Statistical uncertainty	0.097	0.0134	0.0053	0.008	0.0075	0.081	0.17	0.36	2.9

- Measurement dominated by statistical error: wait for new data!
- - : Systematics reducible with statistics increasing
- Main systematics:
 - ct efficiency: flat or taking into account turn-on due to significance requirement
- Angular efficiency: variation of the corresponding parameters according to statistical error LHC Heavy Flavor WG Public Meeting, 10/11/2015

Breakdown of experimental errors

Source of uncertainty	ϕ_s [rad]	$\Delta\Gamma_s~[ps^{-1}]$	$ A_0 ^2$	$ A_S ^2$	$ A_{\perp} ^2$	δ_{\parallel} [rad]	$\delta_{S\perp}$ [rad]	δ_{\perp} [rad]	<i>c</i> τ [μm]
ct efficiency	0.002	0.0057	0.0015	_	0.0023	_	_		1.0
Angular efficiency	0.016	0.0021	0.0060	0.008	0.0104	0.674	0.14	0.66	0.8
Kaon p_T weighting	0.014	0.0015	0.0094	0.020	0.0041	0.085	0.11	0.02	1.1
ct resolution	0.006	0.0021	0.0009	_	0.0008	0.004		0.02	2.9
Flavour tagging	0.003	0.0003	_	_	_	0.006	0.02	_	_
Model bias	0.015	0.0012	0.0008	_	_	0.025	0.03	-	0.4
Mistag distribution modelling	0.004	0.0003	0.0006	-		0.008	0.01	-	0.1
pdf modelling assumptions	0.006	0.0021	0.0016	0.002	0.0021	0.010	0.03	0.04	0.2
$ \lambda $ as a free parameter	0.015	0.0003	0.0001	0.005	0.0001	0.002	0.01	0.03	-
Total systematic uncertainty	0.031	0.0070	0.0114	0.022	0.0116	0.680	0.18	0.66	3.4
Statistical uncertainty	0.097	0.0134	0.0053	0.008	0.0075	0.081	0.17	0.36	2.9

- - : Systematics reducible with statistics increasing
- Kaon P_T weighting: different MC vs Data K spectrum
- ct resolution: scale factor k(ct) of the Gaussian resolution function obtained from MC and calibrated using simulated and real prompt J/ ψ
- Possible model bias checked with Toy MC

Analysis Improvements & Challenges for Run2

• Trigger:

- Need to maximize the Φ_s significance. Require two muons with $P_T>4$ GeV with an additional displaced track (as for $K*\mu\mu$).
- Improve fit method: mass fit with per-event error, fit of the CPV parameter $\lambda = (q/p) \left| \frac{A}{\overline{A}} \right|$
- Flavor tagging: include more variables, and use same-side informations

Conclusions

- CMS will pursue several competitive analyses on B decays Properties using Run2 dataset
- Main topics:
 - Rare decays: $B \rightarrow \mu\mu$, $\tau \rightarrow 3\mu$
 - CP-Violation: $B_s \to J/\Psi \phi$, $B_s \to J/\Psi \pi \pi$, $B_s \to J/\Psi f_o$, $B^o \to J/\Psi Ks$
 - B-hadrons lifetimes (B°, B+, B_s, B_c, Λ_b , Ξ_b ,...)
 - B \rightarrow X_sµµ (X_s=K*0, K*+, K+): new parameterizations, include other observables (A₁, A_{CP})
 - B mixing and A_{SL}
- Expected factor ~ 10 in statistics increasing
- Increased rate and pile-up require improvements of trigger strategy (path analysis-driven) and development of smart techniques

 28
 LHC Heavy Flavor WG Public Meeting, 10/11/2015 M.Margoni Universita` di Padova & INFN

Backup

$B \rightarrow \mu^{\dagger}\mu^{\tilde{}}$

- •Golden mode to test New Physics with scalar/pseudo-scalar interactions
- •Suppression of B_d over $B_s \sim |V_{td}|/|V_{ts}|$ in SM:

BR(B₅
$$\rightarrow \mu^{+}\mu^{-}) \approx (3.2 \pm 0.2) 10^{-9}$$

BR(B
$$\mu^+\mu^-$$
) = (0.11 ± 0.01) 10⁻⁹

[Buras et al. Eur. Phys. J C72, 2172 (2012)] [Uncertainties from f_{Bs} (lattice), $V_{tb}V_{ts}$, m_t , T_{Bs}]

- Test of Minimal Flavor Violation: general structure of SM FCNC is preserved, flavor violation depends only on CKM
- •Check New Physics scenarios in the extended Higgs sector:
 - → MSSM: BR ~ tan^6 β/M⁴_A
- \bullet 2 Higgs Doublet Models: BR \sim tan 4 β LHC Heavy Flavor WG Public Meeting, 10/11/2015 M.Margoni Universita` di Padova & INFN

Upgrade performance for B $\rightarrow \mu\mu$ after Run2

CMS Upgrades more affecting the result:

- CMS-PAS FTR-14-015
- L1 Trigger: new track trigger (necessary to reduce the rate)
- → Tracker: reduced material budget & increased resolution

Estimate of analysis sensitivity

\mathcal{L} (fb $^{-1}$)	$N(\mathbf{B}_s^0)$	$N(B^0)$	$\delta \mathcal{B}(\mathrm{B}^0_s o \mu^+\mu^-)$	$\delta \mathcal{B}(\mathrm{B}^0 o \mu^+\mu^-)$	B ⁰ sign.	$\delta rac{\mathcal{B}(B^0 ightarrow \mu^+ \mu^-)}{\mathcal{B}(B^0_s ightarrow \mu^+ \mu^-)}$
20	18.2	2.2	35%	> 100%	$0.0 - 1.5 \sigma$	> 100%
100	159	19	14%	63%	$0.6 - 2.5 \sigma$	66% Run2
300	478	57	12%	41%	$1.5 - 3.5 \sigma$	43%
300 (barrel)	346	42	13%	48%	$1.2 - 3.3 \sigma$	50%
3000 (barrel)	2250	271	11%	18%	$5.6 - 8.0 \sigma$	21%

LHC Heavy Flavor WG Public Meeting, 10/11/2015

FCNC process forbidden at tree level, BR~10⁻⁶: Probe the SM!

- •Amplitudes expressed using OPE in terms of:
 - → Hadronic Form Factors
 (accuracy ~20%)

[A. Barucha et al. arXiv 1004.3249]

- Wilson coefficients Ceff, Ceff, Ceff 10 [A. Alí et al., PRD 61 074024, Z. Phys. C 67 417]
- Clean theoretical predictions expecially at low q²=m²(μ⁺μ⁻)
- Experimentally clean signature

$B \rightarrow K^* \mu^+ \mu^-$

- Strategy:
 - Measure event yields, A_{FB} and F_L from an unbinned simultaneous fit to M(Kπμμ), $cos(\theta_K)$ and $cos(\theta_I)$ in bins of q^2

$$PDF(M, \theta_{K}, \theta_{l}) = Y_{S}^{C}S^{C}(m)S^{a}(\theta_{K}, \theta_{l}) \epsilon^{C}(\theta_{K}, \theta_{l}) \qquad \text{Right tag Signal} \\ + Y_{S}^{C}\frac{f^{M}}{1 - f^{M}}S^{M}(m)S^{a}(-\theta_{K}, -\theta_{l}) \epsilon^{M}(\theta_{K}, \theta_{l}) \qquad \text{Wrong tag Signal} \\ + Y_{B}B^{m}(m)B^{\theta_{K}}(\theta_{K})B^{\theta_{l}}(\theta_{l}) \qquad \qquad \text{BKG} \\ Y_{S}^{C}, Y_{B} \qquad \qquad \text{Event Yields} \\ S^{a}(\theta_{K}, \theta_{l}), \epsilon^{C}(\theta_{K}, \theta_{l}), \quad S^{a}(-\theta_{K}, -\theta_{l}), \epsilon^{M}(\theta_{K}, \theta_{l}) \quad \text{Signal 2D angular shape and efficiency} \\ S^{C}(m), S^{M}(m), B(m) \qquad \qquad \text{Mass PDFs} \\ B^{\theta_{K}}(\theta_{K}), \quad B^{\theta_{l}}(\theta_{l}) \qquad \qquad \text{Angular BKG PDFs}$$

→ dB/dq² obtained relative to the normalization channel B° → K*J/ψ:

$$\frac{\mathrm{d}\mathcal{B}\left(\mathsf{B}^{0}\to\mathsf{K}^{*0}\mu^{+}\mu^{-}\right)}{\mathrm{d}q^{2}} = \left(\frac{Y_{S}^{C}}{\epsilon^{C}} + \frac{Y_{S}^{C}f^{M}}{(1-f^{M})\epsilon^{M}}\right) \left(\frac{Y_{N}^{C}}{\epsilon_{N}^{C}} + \frac{Y_{N}^{C}f_{N}^{M}}{(1-f_{N}^{M})\epsilon_{N}^{M}}\right)^{-1} \frac{\mathcal{B}\left(\mathsf{B}^{0}\to\mathsf{K}^{*0}\mathsf{J}/\psi\right)}{\Delta q^{2}}$$

S=signal
N=normalization

$B \rightarrow K^* \mu^+ \mu^-$

Strategy:

• Measure event yields, A_{FB} and F_L from an unbinned simultaneous fit to M(Kπμμ), $cos(\theta_K)$ and $cos(\theta_I)$ in bins of q^2

Breakdown of experimental errors

• Results in the range $1 < q^2 < 6 \text{ GeV}^2$ (best theoretical error)

Experiment	$F_{ m L}$	$A_{ m FB}$	$dB/dq^2 (10^{-8} \text{GeV}^{-2})$
CMS (7 TeV)	$0.68 \pm 0.10 \pm 0.02$	$-0.07 \pm 0.12 \pm 0.01$	$4.4 \pm 0.6 \pm 0.4$
CMS (8 TeV, this analysis)	$0.72 \pm 0.05 \pm 0.04$	$-0.15^{+0.10}_{-0.08}\pm0.03$	$3.6 \pm 0.3 \pm 0.3$
CMS (7 TeV + 8 TeV)	0.71 ± 0.06	$-0.12^{+0.07}_{-0.08}$	3.8 ± 0.4
LHCb	$0.65^{+0.08}_{-0.07}\pm0.03$	$-0.17 \pm 0.06 \pm 0.01$	$3.4 \pm 0.3 ^{+0.4}_{-0.5}$
BaBar		_	$4.1^{+1.1}_{-1.0}\pm0.1$
CDF	$0.69^{+0.19}_{-0.21}\pm0.08$	$0.29^{+0.20}_{-0.23}\pm0.07$	$3.2 \pm 1.1 \pm 0.3$
Belle	$0.67 \pm 0.23 \pm 0.05$	$0.26^{+0.27}_{-0.32}\pm0.07$	$3.0^{+0.9}_{-0.8}\pm0.2$
SM (LCSR)	$0.79^{+0.09}_{-0.12}$	$-0.02^{+0.03}_{-0.02}$	$4.6^{+2.3}_{-1.7}$
SM (Lattice)	$0.73^{+0.08}_{-0.10}$	$-0.03^{+0.04}_{-0.03}$	$3.8^{+1.2}_{-1.0}$

Results consistent with SM

Measurement dominated by statistical error: wait for new data!

$$B_s \rightarrow J/\Psi \phi$$

- CP violating phase Φ_s originated from interference between:
 - Direct $B_s \rightarrow J/\Psi \phi$
 - Decay via mixing $B_s \to \overline{B}_s \to J/\Psi \varphi$
- •In the SM:
 - $\Phi_s = -2\beta_s = 0.0363^{+0.0016}$ with $\beta_s = arg(-V_{ts} V_{tb}^* / V_{cs} V_{cb}^*)$

New Physics in B \bar{B}_s mixing could modify the phase

36

$B_s \rightarrow J/\Psi \varphi$

- Strategy:
 - Exclusive reconstruction of events
 - Flavor tagging of the B_s at the production time
 - → Multidimensional fit on m(B_s), θ_T, φ_T, ψ_T, ct, δct

Likelihood:

$$\mathcal{L} = L_{s} + L_{bkg},$$

$$L_{s} = N_{s} \cdot \left[\tilde{f} \left(\Theta, \alpha, ct \right) \otimes G \left(ct, \sigma_{ct} \right) \cdot \frac{\epsilon \left(\Theta \right)}{\epsilon \left(\Theta \right)} \right] \cdot P_{s} \left(m_{B_{s}^{0}} \right) \cdot \frac{P_{s} \left(\sigma_{ct} \right) \cdot P_{s} \left(\xi \right)}{P_{s} \left(\sigma_{ct} \right) \cdot P_{bkg} \left(\sigma_{ct} \right) \cdot$$

- $\widetilde{f}(\Theta, \alpha, ct)$ signal PDF
- $G(ct, \sigma_{ct})$ Gaussian proper decay time resolution, per-event
- $\varepsilon(\Theta) = \varepsilon(\cos\theta_{\rm T}, \cos\psi_{\rm T}, \varphi_{\rm T})$ angular efficiencies
- $P_{\rm S}(m_{\rm Bs})$ signal mass PDF, triple-Gaussian with a common mean
- $P_{S}(\sigma_{ct})$ proper time uncertainty (Γ functions)
- $P_{s}(\xi)$ tag decision, per-event
- P_{bkq} background PDFs

P. Eerola

37

$B_s \rightarrow J/\Psi \phi$

• Opposite side lepton (e, μ) Flavor Tagging using a MultiLayer Perceptron NN optimized to maximize $P \approx \epsilon (1-2\omega)^2$ based on lepton P_{τ} , η , isolation, IP(3D), charge in a ΔR cone

• Ptag=1.307 ± 0.031 ±0.007% ω=30.17± 0.24 ±0.05% ε=8.31± 0.03%

