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T. Blake

LHCb WG structure
• The LHCb collaboration is organised loosely in 8 WGs. 

!

!

!

!

!

!
!

• Top, EW and Quarkonia are in separate LPCC WGs. 

• The WG’s are arranged such that similar types of analysis are 
grouped together.  
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rare decays of b-hadrons (and kaons) + searches for LFV.

decay propertiesspectroscopy

production

rare decays of c-hadrons
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Disclaimer
• “Decay properties of heavy hadrons and of 𝝉 leptons, and the 

search for rare or SM forbidden decays” covers a large part of 
LHCb’s physics programme (more than 200 papers).  

• I will just pick (with some personal bias) a couple of example 
analyses/issues that might be of interest to the LHCFWG. 

• For an exhaustive list of our results:  
➡ http://lhcbproject.web.cern.ch/lhcbproject/Publications/

LHCbProjectPublic/Summary_all.html

3

http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Summary_all.html


T. Blake

Decay properties?
• Branching fractions 

➡ Averaged by the Particle Data Group (http://pdg.lbl.gov/).  

• Lifetimes (Bs, Λb, Ξb ,Ωb  and Bc etc) 
➡ Averaged by HFAG (http://www.slac.stanford.edu/xorg/hfag/) 

• Mass and width differences 
➡ Averaged by HFAG 

• CP violating phases 
➡ Averaged by HFAG, CKMFitter (http://ckmfitter.in2p3.fr/) or 

UTFit (http://www.utfit.org/UTfit/) for CKM angles. 

➡ Internal 𝛾 combination performed by LHCb.
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B(s,d) → 𝝁+𝝁−  branching fraction
• Combination of branching fraction is straightforward with a well 

defined likelihood but there is (AFAIK) no good prescription to 
combine upper limits. 
➡ The PDG just uses the best single measurement.  

• This was the motivation behind the joint analysis of B(s,d) → 𝝁+𝝁− 
performed by LHCb/CMS. This was a useful experience 
➡ Harmonisation of the analyses led to an improved 

understanding of background modelling (Λb→pμν) and lifetime 
dependent effects (and the best possible result).  

but not without its problems: 
➡ It was an intensive process and there is no way to update the 

combination if an experiment updates one of its measurements. 

This process convinced us that a LHCFWG would be useful.
5
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B(s,d) → 𝝁+𝝁−

• Simultaneous analysis 
of the LHCb and CMS 
datasets. 
➡ Binned in MVA 

response. 
➡ CMS data also split 

by barrel/end cap.  

• Nuisance parameters 
(background 
branching fractions,   
fs/fd) shared between 
the experiments.
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[CMS + LHCb collaborations, Nature, 522 (2015) 68]!
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B(s,d) → 𝝁+𝝁−

• Best fit results:  
!
!
!
!

➡ Bs  decay observed at 6.2𝜎, evidence for B0 decay at  3.0𝜎
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Branching fractions
• We generally measure branching fractions w.r.t. to a control mode: 

!

!

!

!

!

• The hadronisation fractions and control mode branching fraction 
are clearly correlated between experiments.  

• We try to state the value of                  in our papers (the PDG is a 
moving target so citing the PDG may not be sufficient for a future 
combination). 
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B0 → K*0𝜇+𝜇− decay
• Large number of 

observables: branching 
fractions, CP 
asymmetries and 
angular observables. 

• Sensitive to new vector/
axial-vector currents 
and virtual photon 
polarisation (left-
handed in SM). 

• Also receives 
contributions from 
intermediate hadronic 
states decaying to a 
dimuon pair.
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B0 → K*0𝜇+𝜇−  angular basis
• Four-body final state. 

➡ Angular distribution provides 
many observables that are 
sensitive to NP. 

• System described by three angles 
and the dimuon invariant mass 
squared, q2.  
➡ Angular convention is important, 

it determines the sign convention 
for the observables (source of 
endless confusion when 
comparing theory/experiment).  

➡ It would be good to have a 
common convention between 
experiments.
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?
B0 → K*0𝜇+𝜇−  timeline

We are statistically limited. Systematic uncertainties will remain negligible 
with the run II dataset.  

NB: Our q2 binning has evolved with time, but we have used a ±100 MeV 
mass window for the K* throughout. 
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0.37 fb-1 analysis 
fitting single angle 
projections.

3 fb-1 full angular 
analysis

1 fb-1 analyses using 
angular folding to extract 
a larger number of angular 
observables.  
Tension seen w.r.t SM 
predictions in P’5.

Amplitude 
analysis of  
Kπ𝜇+𝜇−?

[LHCb-CONF-2015-002] !
[LHCb-PAPER-2015-051]

[JHEP 08 (2013)  131]!
[PRL 101 (2013) 191801]

[PRL 108 (2011) 181806] !
increasing dataset

increasing complexity

We determine the full set of CP-averaged and 
CP-asymmetric angular observables. S-wave 
is included in the analysis (this was our largest 
source of systematic uncertainty).
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3fb-1 B0 → K*0𝜇+𝜇− analysis

12

B0 

J/𝜓

𝜓(2S)

B0 ! J/ K⇤0

combinatorial background

Select clean sample of 
signal events using 
multivariate classifier.  
!
2398 ± 57 candidates in  
0.1 < q2 < 19 GeV2 after 
removing the J/𝜓 and 𝜓(2S).

[LHCb-CONF-2015-002/LHCb-PAPER-2015-051]

You can see the same structure in the data as in the cartoon.  
We would ideally like to subdivide the data as finely as possible in q2
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B0 → K*0𝜇+𝜇− binning

13

B0 

J/𝜓 {

𝜓(2S) {We remove the narrow 
Charmonium states 
using the vetoes 
!
and
8.0 < q2 < 11.0 GeV2/c4

12.5 < q2 < 15.0 GeV2/c4

𝜙 {

Veto  
to remove the 𝜙  
(we can see this in our dataset).

0.98 < q2 < 1.1 GeV2/c4
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Old 1 fb-1 analysis
• We have changed our 

q2 binning scheme for 
this round of the 
analysis. 
➡ Obviously this is 

something that 
would be good to 
agree on between 
the LHC 
experiments.
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The old binning scheme came from Belle and is not ideal for 
LHCb (any of the LHC experiments?) due to our mass resolution. 

[JHEP 08 (2013) 131]

Complicated 
veto for narrow 
charmonium 
states
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B0 → K*0𝜇+𝜇− backgrounds

15

B0 

Suppress 
backgrounds from e.g. 
!
(if the p is 
misidentified as a π) 
using PID information. 

⇤0
b ! pK�µ+µ�

We can invert our PID requirements to measure the branching 
fractions of the different peaking backgrounds.  

Would this be useful for future ATLAS/CMS analyses?

forms a broad ‘peak’ in this region
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Results
• Majority of observables are consistent between experiment/SM 

predictions. Good degree of consistency between experiments.  

!

!

!

!

!

!

!

• SM predictions based on  
[Altmannshofer & Straub, arXiv:1411.3161] !
[LCSR form-factors from Bharucha, Straub & Zwicky, arXiv:1503.05534] 
[Lattice form-factors from Horgan, Liu, Meinel & Wingate arXiv:1501.00367]
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Beware naïve combinations
• In the B0 → K*0𝜇+𝜇− 

analysis we also need 
to be aware of 
boundary issues in the 
likelihood surface that 
come from the 
definition of the PDF. 

• Experiments will be 
more/less sensitive 
depending on the 
exact distribution of 
events in their dataset 
and the construction of 
their likelihood. 
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AFB and FL are not independent observables
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Form-factor “free” observables
• In QCD factorisation/SCET 

there are only two form-factors  
➡ One is associated with A0 

and the other A|| and A⊥.  

• Can then construct ratios of 
observables which are 
independent of form-factors, 
e.g.  

18

local tension with SM predictions  
(2.8𝜎 and 3.0𝜎) 
Obvious interest in ATLAS/CMS 
measuring this observable. 

P 0
5 = S5/

p
FL(1� FL)
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C
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20
15
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02

]

• P’5 is one of a set of so-called form-factor free observables that 
can be measured [S. Descotes-Genon et al. JHEP 1204 (2012) 104].
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𝜙s timeline

+ Many steps in between to understand the structure of the ππ and 
KK system (through amplitude analyses), possible penguin 
pollution of 𝜙s and for improvements in flavour tagging.
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[PRL114 (2015) 041801]
3fb-1 analysis of J/ѱ KK, 
allowing 𝜙s to be 
different for different 
polarisation states.

[PRD 87 (2013) 112010]
1fb-1 result, combining 
a time-dependent 
angular analysis of  
J/ѱ KK with a time 
dependent 
measurement of J/ѱππ. 

[PRL 108 (2012) 101803]
0.37 fb-1 result, time-
dependent angular 
analysis of J/ѱ 𝜙.

[PRL 108 (2012) 241801]
0.37 fb-1 result, 
determining the sign 
of ΔΓs by exploiting 
S-wave interference 
in the KK system.
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ΔΓs versus 𝜙s
!

!

!

!

!

!

!

!

• Measurements are statistically limited. We will have to pay 
attention to systematic uncertainties with the larger run II datasets 
(including correlations between 𝜙s/ΔΓs and Γs/Δms).
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[D0, PRD 85 (2012) 
032006] !
!
[CDF, PRL 109 (2012) 
171802]!
!
[LHCb,  PRL 114 (2015) 
041801]!
!
[CMS, CMS-BPH-13-012]!
!
[ATLAS, EPS 2015]
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The unitarity triangle

21

• CKM matrix is the only source of CP violation in SM.                                              

SM-like picture: data are consistent with a triangle in the complex plane

VudV
⇤
ub + VcdV

⇤
cb + VtdV

⇤
tb = 0



T. Blake

The unitarity triangle
• 𝛾  is the least well known of the angles of the unitarity triangle.   

➡ The only angle that can be determined from tree level processes.
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Summer 2014 combination !
[LHCB-CONF-2014-004]

LHCb constraints are already 
competitive with the legacy B-
factory measurements.!
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The unitarity triangle

23

World leading constraints from 
LHCb on the top-side of triangle 
coming from Δmd, Δms  
(and new measurements from  
B+ → π+ 𝝁+𝝁−). 
[LHCb-CONF-2015-003]!
[Eur. Phys. J. C73 (2013)]!
[PRL 113 (2014) 172001]!
[JHEP 10 (2015) 034]

Constraints on sin 2𝜷 that are 
competitive with the results from 
the B-factories 
[PRL 115 (2015) 031601]

We have measured |Vub| for 
the first time in Λb→pμν 
decays !
[Nature Physics (2015) 3415]

NB: tension between inclusive 
and exclusive measurements.
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Run II data taking
• LHCb runs at a much lower 

luminosity (lower pileup) than 
ATLAS and CMS, with a levelled 
luminosity that is stable 
throughout the run.  

• We have collected 0.3 fb-1 of 
integrated luminosity this year.  
➡ For most channels we will not 

update our results until we 
have approximately doubled 
our dataset.  

• Expect to have 4x larger dataset 
by the end of run II. 
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Final remark
• One topic that might be useful to explore in the LHCFWG is 

benchmark models for run II and beyond.  
➡ Especially if we can find models that can be compared to 

direct searches at ATLAS and CMS.

25



Backup



T. Blake

Mixing induced CP
• To study mixing induced CP 

violation, look at tree level               
decays to a common final state.  
➡ Studied using Bs→J/ѱ hh 

decays in the Bs system.  

• Probes CP violation from 
interference between decays with 
and without mixing (and NP 
contributions to the box diagram). 

•  Mixing phase for Bs

27

Bq Bq

Vtb

V ⇤
tq

t

W W
t̄

q̄

q = s, db

b̄V ⇤
tq

Vtb

q

p
=

V ⇤
tbVtsV

⇤
tbVts

|V ⇤
tbVtdV

⇤
tbVtd|

= ei�s

b ! ccs

Requires a time-dependent 
flavour-tagged analysis.
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Penguin pollution
• The theoretical uncertainty on 𝜙s is 

mainly due to penguin pollution of 
the  decay (which can have a 
different weak phase).  

• Can use              processes to test 
the size of the penguin pollution. 

• The pollution is found to be small  
➡ Consistent with zero within 0.01 

rad c.f. statistical uncertainty on 
𝜙s of 0.035 rad.  
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Charmonium pentaquark
• Recent LHCb result 

provided the first 
observation of possible 5 
quark states in Λb→J/ѱ pK.
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Structure in m(J/ѱ p) in 
the Dalitz plot.

Phase motions consistent with 
resonance behaviour

[LHCb,Phys. Rev. Lett. 115 (2015) 072001]

m(4380) =(4380± 8± 9)MeV

�(4380) =(205± 18± 86)MeV

m(4450) =(4449.8± 1.7± 2.5)MeV

�(4450) =(39± 5± 19)MeV
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Amplitude analyses
• In general results of amplitude analyses are difficult to combine 

and directly compare between experiments.  
➡ Interpretation of the decay properties depends on model 

assumptions.  
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e.g. for the Pentaquark 
analysis on the number of 
pentaquark states considered 
and their spin/parity.  Any 
comparison also depends on 
the choice of model for the Λ* 
states. 
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B0 → K*0𝜇+𝜇− binning

31

B0 

Remove partially 
reconstructed  
backgrounds, e.g. 
!
separated by          . 
This has a different 
angular structure to 
the background under 
our signal.

B+ ! K+
1 µ+µ�

m(⇡)

m(K+⇡�µ+µ�) > 5170 MeV/c2
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Hidden sector search for displaced 
dimuon pairs

32

[LHCb, PRL 115 (2015) 161802]

• Search for peak in dimuon spectrum, for either prompt and 
displaced (> 3𝜎t) dimuon pairs.  

➡ Data consistent with background only hypothesis.  

• Sensitive in LHCb to lifetimes up-to 1 ns, but best sensitivity for 
lifetimes less than 10 ps.
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Coverage issues?
• Relatively straightforward to combine likelihoods if correlations are 

known. However, in LHCb we use FC to define our confidence 
intervals due to coverage issues in the least populated q2 bins. 
➡ AFAIK, there is no simple prescription to combine FC intervals. 

• This should not be a problem in our run II analysis.
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Profile likelihood, Feldman-Cousins with plug-in treatment of nuisance parameters

preliminary

[LHCb-PAPER-2015-051]

preliminary

Is this a specific 
problem for our 
fit or is this seen 
by ATLAS/CMS 
as well?  


