Heavy flavour production at LHCb

[LHC Heavy Flavour (production) WG]

Niels Tuning, 10 Nov 2015

Outline

- 1) Recent highlights
 - ♦ Open charm production at $\sqrt{s}=13$ TeV
 - ◆ Y production ratio (8 TeV / 7 TeV)
 - ◆ Y + D production
- 2) B production
 - ◆ Cross section
 - ◆ Production asymmetries
- 3) Relative production of b-hadron species
 - \bullet f_{Λ}/f_{d}
 - \bullet f_s/f_d
 - p_T , η dependence
- 4) B_c production

Motivation

- 1) Recent highlights
 - Open charm production at $\sqrt{s}=13$ TeV
 - ◆ Y production ratio (8 TeV / 7 TeV)
 - ◆ Y + D production

Understanding QCD

Double parton scattering

- 2) B production
 - ◆ Cross section
 - ◆ Production asymmetries

Understanding QCD

Crucial for CPV measurements

- 3) Relative production of b-hadron species
 - \bullet f_{Λ}/f_{d}
 - \bullet f_s/f_d

4) B_c production

Indispensable for all BR measurements

notably $B_s \rightarrow \mu^+ \mu^-$ LHCb vs GPD

Two heavy quarks

Non-exhaustive list of LHCb production papers

• No time for: production of excited heavy hadrons $(\chi_c, \Xi_b, ...)$, central exclusive J/Ψ production, cold nuclear effects in p-Pb, polarization, ...

ID	litie
PAPER-2015-032	Study of the production of Λb and B^-0 hadrons in pp collisions and first measurement of the $\Lambda b \rightarrow J/\psi pK$ - branching fraction
PAPER-2015-045	Forward production of Y mesons in pp collisions at s√=7 and 8 TeV
PAPER-2015-037	Measurement of forward J/ψ production cross-sections in pp collisions at $s\sqrt{-13}$ TeV
PAPER-2014-050	Measurement of $B+c$ production in proton-proton collisions at $s\sqrt{-8}$ TeV
PAPER-2014-042	Measurement of the B^-0-B0 and $B^-0s-B0s$ production asymmetries in pp collisions at $s\sqrt{-7}$ TeV
PAPER-2014-040	Measurement of the $\chi b(3P)$ mass and of the relative rate of $\chi b1(1P)$ and $\chi b2(1P)$ production
PAPER-2014-031	Study of χb meson production in pp collisions at $s\sqrt{=7}$ and 8 TeV and observation of the decay $\chi b \rightarrow Y(3S)y$
PAPER-2014-029	Measurement of the $\eta c(1S)$ production cross-section in proton-proton collisions via the decay $\eta c(1S) \rightarrow pp^-$
PAPER-2014-015	Study of Y production and cold nuclear matter effects in p Pb collisions at sNN $\sqrt{-5}$ TeV.
PAPER-2013-066	Measurement of <mark>Y</mark> production in <i>pp</i> collisions at s√=2.76 ~TeV
PAPER-2013-052	Study of J/ψ production and cold nuclear matter effects in p Pb collisions at s\tiny{NN} $\sqrt{-5}$ \text{tev}
PAPER-2013-028	Measurement of the relative rate of prompt χ c0 , χ c1 and χ c2 production at $s\sqrt{=7}$ TeV
PAPER-2013-004	Measurements of B meson production cross-sections in proton-proton collisions at $s\sqrt{-7}$ TeV
PAPER-2012-057	Measurements of the $\bigwedge_b \rightarrow \bigwedge_J \psi$ decay amplitudes and the \bigwedge_b baryon production polarisation in pp collisions at $s\sqrt{=7}$ TeV
PAPER-2012-039	Measurement of J/ψ production in pp collisions at $s\sqrt{-2.76}$ TeV
	Measurements of $B\pm c$ production and mass with the $B+c\rightarrow J/\psi\pi+$ decay
PAPER-2012-003	Observation of double charm production involving open charm in pp collisions at $sqrt(s) = 7 \text{ TeV}$
PAPER-2011-045	Measurement of $\psi(2S)$ meson production in pp collisions at $s\sqrt{-7}$ TeV
PAPER-2011-043	Measurement of the B± production cross-section in pp collisions at $s\sqrt{-7}$ TeV
PAPER-2011-036	Measurement of Y production in pp collisions at s√=7 TeV
	Observation of $X(3872)$ production in pp collisions at $s\sqrt{=7}$ TeV
PAPER-2011-030	Measurement of the ratio of prompt χc to J/ψ production in pp collisions at $s\sqrt{-7}$ TeV
PAPER-2011-019	Measurement of the cross-section ratio $\sigma(\chi c^2)/\sigma(\chi c^1)$ for prompt χc production at $sqrts=7$ TeV
PAPER-2011-013	Observation of double J/ψ production in proton-proton collisions at a centre-of-mass energy of $s\sqrt{=7}$ TeV
PAPER-2011-003	Measurement of J/ψ production in pp collisions at (\sqrt{s})=7 TeV

Recent highlights

- $\sigma(pp \rightarrow c\underline{c})$ at 13 TeV
 - $-\sigma_{LHCb \ acc} = 2.94 \pm 0.24 \ mb$
 - $d\sigma/dp_T$ agreement worsens with higher \sqrt{s}
 - f(c→D_(s)) fragmentation independent of c production

- $\sigma(pp \rightarrow Y)_{8TeV}/\sigma(pp \rightarrow Y)_{7TeV}$
 - Increase with √s larger than predicted
 - Colour-Octet model does not describe ratio vs η

- $\sigma(pp \rightarrow YD)$
 - b and c production
 - Good agreement with Double Parton Scattering

Outline

1) Recent highlights

- ♦ Open charm production at $\sqrt{s}=13$ TeV
- ◆ Y production ratio (8 TeV / 7 TeV)
- ◆ Y + D production

2) B production

- ◆ Cross section
- ◆ Production asymmetries

3) Relative production of b-hadron species

- \bullet f_{Λ}/f_{d}
- \bullet f_s/f_d
- \bullet p_T, η dependence
- 4) B_c production

B production

• Production cross section from detached J/ψ : $B \rightarrow J/\psi X$

 $ightharpoonup \sigma(J/\psi(-from-b))$ at $\sqrt{s}=13$ TeV:

$$\sigma$$
(prompt J/ψ , $p_{\rm T} < 14$ GeV/ c , $2.0 < y < 4.5) = 15.30 ± 0.03 ± 0.86 μb $\sigma(J/\psi$ -from- b , $p_{\rm T} < 14$ GeV/ c , $2.0 < y < 4.5) = 2.34 ± 0.01 ± 0.13 μb $\sigma(J/\psi$ -from- $\sigma(J/\psi)$$$

> $\sigma(bb)$ at $\sqrt{s}=13$ TeV:

$$c(pp \rightarrow b\overline{b}X) = 515 \pm 2 \pm 53 \,\mu b$$

- No uncertainty from extrapolation to 4π
- Agreement with GPD ?

B production

Single differential cross section well described by FONLL:

 Accurate measurement, and prediction of ratio

$$ightharpoonup R_{13/8} = \sigma_{\sqrt{s}=13\text{TeV}} / \sigma_{\sqrt{s}=8\text{TeV}}$$

8/22

Production asymmetry?

- Crucial ingredient for CP violation measurements
- Reasons to believe it's non-vanishing
 - Valence quarks in pp scattering
 - "drag effect" from proton remnant

B production asymmetry

➤ Time-dependent fit, with 3 fb⁻¹:

$$A_{\rm P}(B^0) = -0.0035 \pm 0.0076 \,(\text{stat}) \pm 0.0028 \,(\text{syst})$$

 $A_{\rm P}(B_s^0) = 0.0109 \pm 0.0261 \,(\text{stat}) \pm 0.0066 \,(\text{syst})$

\triangleright Using B \rightarrow hh, with 1 fb⁻¹:

$$A_{\rm P}(B^0) = (0.6 \pm 0.9)\% \text{ and } A_{\rm P}(B_s^0) = (7 \pm 5)\%$$

Outline

1) Recent highlights

- ♦ Open charm production at $\sqrt{s}=13$ TeV
- ◆ Y production ratio (8 TeV / 7 TeV)
- ◆ Y + D production

2) B production

- ◆ Cross section
- Production asymmetries

3) Relative production of b-hadron species

- \bullet f_{Λ}/f_{d}
- \bullet f_s/f_d
- \bullet p_T, η dependence
- 4) B_c production

B production: different species

B meson production measured, using BR from B factories:

$$\frac{\mathrm{d}^2 \sigma(B)}{\mathrm{d}p_{\mathrm{T}} \,\mathrm{d}y} = \frac{N_B(p_{\mathrm{T}}, y)}{\epsilon_{\mathrm{tot}}(p_{\mathrm{T}}, y) \,\mathcal{L}_{\mathrm{int}} \mathcal{B}(B \to J/\psi X) \Delta p_{\mathrm{T}} \,\Delta y}$$

Integrated cross section 0<p_T<40 GeV, 2<y<4.5:

$$\sigma(pp \to B^+ X) = 38.9 \pm 0.3 \, (\mathrm{stat.}) \pm 2.5 \, (\mathrm{syst.}) \pm 1.3 \, (\mathrm{norm.}) \, \mu b_s$$
 $\sigma(pp \to B^0 X) = 38.1 \pm 0.6 \, (\mathrm{stat.}) \pm 3.7 \, (\mathrm{syst.}) \pm 4.7 \, (\mathrm{norm.}) \, \mu b_s$
 $\sigma(pp \to B_s^0 X) = 10.5 \pm 0.2 \, (\mathrm{stat.}) \pm 0.8 \, (\mathrm{syst.}) \pm 1.0 \, (\mathrm{norm.}) \, \mu b_s$

- \triangleright Need the branching fraction of B_s⁰→J/ΨX ...
- but for the branching fraction one needs the production rate

Relative production of different species

Semileptonic

Assume equal inclusive decay width

$$\frac{f_s}{f_u + f_d} = \frac{n_{\text{corr}}(\overline{B}_s^0 \to D\mu)}{n_{\text{corr}}(B \to D^0\mu) + n_{\text{corr}}(B \to D^+\mu)} \frac{\tau_{B^-} + \tau_{\overline{B}^0}}{2\tau_{\overline{B}_s^0}}$$

Hadronic

Assume SU(3) symmetry

$$\left| \frac{f_s}{f_d} = 0.971 \cdot \left| \frac{V_{us}}{V_{ud}} \right|^2 \left(\frac{f_K}{f_{\pi}} \right)^2 \frac{\tau_{B_d}}{\tau_{B_s}} \frac{1}{\mathcal{N}_a \mathcal{N}_F} \frac{\epsilon_{D^-K^+}}{\epsilon_{D_s^-\pi^+}} \frac{N_{D_s^-\pi^+}}{N_{D^-K^+}} \right|$$

LHCb-2011-018, arXiv:1111.2357 LHCb-CONF-2013-011

$$f_s/f_d = 0.259 \pm 0.015$$

LHCb-2011-006, arXiv:1106.4435

Is f_s/f_d constant?

• Measured dependence of f_s/f_d vs p_T , η :

Almost constant

- Important for BR($B_s^0 \rightarrow \mu^+ \mu^-$)
- Extrapolation to full η-range necessary

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \frac{N_{B_s^0 \to \mu^+ \mu^-}}{N_{\text{norm.}}} \times \underbrace{\frac{f_d}{f_s}} \times \underbrace{\frac{\varepsilon_{\text{norm.}}}{\varepsilon_{B_s^0 \to \mu^+ \mu^-}}} \times \mathcal{B}_{\text{norm.}} = \alpha_{\text{norm.}} \times N_{B_s^0 \to \mu^+ \mu^-}$$

Is f_s/f_d constant?

- Dependence of f_s/f_d vs centre-of-mass energy?
- No hint in Run-I; $(f_s/f_d)_{8~{
 m TeV}}/(f_s/f_d)_{7~{
 m TeV}}=1.00\pm0.05$

- ➤ <u>Absolute</u> measurement of f_s/f_d planned at $\sqrt{s}=13$ TeV, with semileptonic B decays
- ightharpoonup Relative measurements with B+ \rightarrow J/ΨK+ and B_s⁰ \rightarrow J/Ψφ also pursued

Relative production fraction of Λ_b^0 vs B^0

- Crucial for all BR(Λ_b^0) measurements
- Absolute determination of f_{Λ}/f_{d} with semileptonic decays

Relative determination of f_∧/f_d with hadronic decays:

Relative production fraction of Λ_b^0 vs B^0

• It flattens of at low p_T :

• Relative determination of f_{Λ}/f_{d} with hadronic decays:

Intermezzo: Absolute branching fractions

- The relative production rates lead to accurate BRs
- Examples:

$$BR(B_s^0 \to D_s^+ \pi^-) = (2.95 \pm 0.27) \times 10^{-3}$$

$$BR(\Lambda_b^0 \to \Lambda_c^+ \pi^-) = (4.30 \pm 0.36) \times 10^{-3}$$

(Useful as normalisation modes)

Production asymmetry of Λ_b^0 baryons

Small production(+decay) asymmetry (surprising?)

Increase of production cross sections of 20% at √s=8TeV:

$$\frac{\sigma(\sqrt{s} = 8 \text{ TeV})}{\sigma(\sqrt{s} = 7 \text{ TeV})} = \begin{cases} 1.23 \pm 0.02 \pm 0.07 & \text{for } \Lambda_b^0, \\ 1.19 \pm 0.01 \pm 0.02 & \text{for } \overline{B}^0. \end{cases}$$

Outline

1) Recent highlights

- ♦ Open charm production at $\sqrt{s}=13$ TeV
- ◆ Y production ratio (8 TeV / 7 TeV)
- ◆ Y + D production

2) B production

- Cross section
- Production asymmetries

3) Relative production of b-hadron species

- Φ f_s/f_d
- ightharpoonup p_T, η dependence

4) B_c production

B_c⁺ production

- \triangleright B_c⁺ is a fascinating system, consisting of 2 heavy quarks
- Study B_c^+ with $B_c^+ \rightarrow J/\Psi K^+$ decays. BCVEGPY is accurate:

• More B_c^+ at higher p_T :

LHCb-2014-050, arXiv:1411.294

Conclusions

- 1) Recent highlights
 - ♦ Open charm production at $\sqrt{s}=13$ TeV

◆ Y production ratio (8 TeV / 7 TeV)

Larger than NRQCD, CO poor

◆ Y + D production

Double parton scattering

Larger than predicted

- 2) B production
 - ◆ Cross section

Ratio 13/8 TeV provides stringent test

◆ Production asymmetries

Accurate to 1(3)% for $B_{(s)}^0$

- 3) Relative production of b-hadron species
 - \bullet f_{Λ}/f_{d}
 - \bullet f_s/f_d

Accurate input available (for eg. $B_s \rightarrow \mu^+ \mu^-$)

- ightharpoonup p_T, η dependence
- 4) B_c production

Two heavy quarks