SPS-to-LHC Transfer Line Collimators and LHC Injection Protection System

F.M. Velotti, C. Bracco, W. Bartmann, M. Fraser, B. Goddard, M. Meddahi, V. Kain, J. Uythoven and thanks to: R. Bruce, R. De Maria, M. Giovannozzi, S. Redaelli

Introduction	TCDI Setup Validation Simulations	Injection Failures Simulations	Conclusions and Outloo
000000	00	000000	

Outline

Introduction What are the dangers at injection in LHC? How do we deal with that? **TCDI Setup Validation Simulations TCDI** Setup Validation Simulations Procedure Simulations and Measurements Injection Failures Simulations New TDI-S Assumptions Beam 1 Beam 2 Conclusions and Outlook

What are the dangers at injection in LHC?

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○へ⊙

What are the dangers at injection in LHC?

Extraction errors from the SPS;

What are the dangers at injection in LHC?

- Extraction errors from the SPS;
- ► errors in the field/powering of the transfer line active elements;

What are the dangers at injection in LHC?

- Extraction errors from the SPS;
- ► errors in the field/powering of the transfer line active elements;
- ► failures of the injection septum MSI;

What are the dangers at injection in LHC?

- Extraction errors from the SPS;
- errors in the field/powering of the transfer line active elements;
- failures of the injection septum MSI;
- ► failures of the injection kicker MKI.

Conclusions and Outlook

= 900

How do we deal with that?

► Constant surveillance of TL active elements current;

- Constant surveillance of TL active elements current;
- ► series of passive protection devices:

- Constant surveillance of TL active elements current;
- series of passive protection devices:
 - TPSGs (SPS extraction septa);

- Constant surveillance of TL active elements current;
- series of passive protection devices:
 - TPSGs (SPS extraction septa);
 - TCDIs (TL elements and MSI);

- Constant surveillance of TL active elements current;
- series of passive protection devices:
 - TPSGs (SPS extraction septa);
 - TCDIs (TL elements and MSI);
 - ► TDI, TCLIA & B (LHC elements).

- Constant surveillance of TL active elements current;
- series of passive protection devices:
 - TPSGs (SPS extraction septa);
 - TCDIs (TL elements and MSI);
 - TDI, TCLIA & B (LHC elements).

TCDI Setup Validation Simulation

Motivation

- The TCDIs need to be aligned and their settings need to be validated with beam;
- ► this process is quite tedious due to the assumptions needed and the single passage nature of the TLs;

TCDI Setup Validation Simulation

Motivation

- The TCDIs need to be aligned and their settings need to be validated with beam;
- this process is quite tedious due to the assumptions needed and the single passage nature of the TLs;

- Loss maps simulations needed to ease and improve the validation methodology;
- no ready-to-use simulation tools available for this kind of tracking
 ⇒ simple and easily usable for beam lines (target mainly single
 turn tracking);
- scattering routine developed in python ⇒ pycollimate;
- ► interfaced with both MADX-PTC and MADX (directly under the hood).

 Tracking inside active elements done with MADX (or MADX-PTC);

- Tracking inside active elements done with MADX (or MADX-PTC);
- when a collimator is encountered the external scattering routine is called;

Introduction	TCDI Setup Validation Simulations	Injection Failures Simulations	Conclusions and Outlook
000000	00	000000	

- Tracking inside active elements done with MADX (or MADX-PTC);
- when a collimator is encountered the external scattering routine is called;
 - it is developed as a python module;
 - different classes and functions to help the production of input files and analysis are also available;
 - modular;

Introduction	TCDI Setup Validation Simulations	Injection Failures Simulations	Conclusions and Outlook
000000	00	000000	

- Tracking inside active elements done with MADX (or MADX-PTC);
- when a collimator is encountered the external scattering routine is called;
 - it is developed as a python module;
 - different classes and functions to help the production of input files and analysis are also available;
 - modular;
- particles are sent back to MADX as lost and added to "trackloss" table or kept for further tracking.

HL-LHC Injection Protection System

The change that will be introduced for HL-LHC in the injection protection devices (new TDI) and the new high-brightness beams needed to be simulated to understand if the protection was still sufficient and if the auxiliary collimators (TCLIA/B) needed to be upgraded as well;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

HL-LHC Injection Protection System

- The change that will be introduced for HL-LHC in the injection protection devices (new TDI) and the new high-brightness beams needed to be simulated to understand if the protection was still sufficient and if the auxiliary collimators (TCLIA/B) needed to be upgraded as well;
- good occasion to use the new simulation tool;

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

HL-LHC Injection Protection System

- The change that will be introduced for HL-LHC in the injection protection devices (new TDI) and the new high-brightness beams needed to be simulated to understand if the protection was still sufficient and if the auxiliary collimators (TCLIA/B) needed to be upgraded as well;
- good occasion to use the new simulation tool;
- ▶ gain more experience with it.

Int	troduction	TCDI Setup Validation Simulations	Injection Failures Simulations	Conclusions and Outlook
00	00000	•0	000000	

 ► TCDIs centred using beam-based measurement ⇒ new operational tool does it automatically;

<ロト < 部 > < 注 > < 注 > < 注 > のへの

000000 •0 000000	Introduction	TCDI Setup Validation Simulations	Injection Failures Simulations	Conclusions and Outlook
	000000	•0	000000	

- ► TCDIs centred using beam-based measurement ⇒ new operational tool does it automatically;
- calibration of BLM shooting a pilot on a closed jaw at -5 σ;

・ロト ・四ト ・ヨト ・ヨト

3

Dac

000000 •0 000000	Introduction	TCDI Setup Validation Simulations	Injection Failures Simulations	Conclusions and Outlook
	000000	•0	000000	

- ► TCDIs centred using beam-based measurement ⇒ new operational tool does it automatically;
- calibration of BLM shooting a pilot on a closed jaw at -5 σ;
- gaps set to 5 σ ;

・ロト ・ 同ト ・ ヨト ・ ヨト

Sac

introduction iC	DI Setup Validation Simulations	Injection Failures Simulations	Conclusions and
000000 00)	000000	

- ► TCDIs centred using beam-based measurement ⇒ new operational tool does it automatically;
- calibration of BLM shooting a pilot on a closed jaw at -5 σ;
- gaps set to 5 σ ;
- oscillations in the lines with amplitude of 5 σ for each phase sampled;

Outlook

000000 •0 000000	Introduction	TCDI Setup Validation Simulations	Injection Failures Simulations	Conclusions and Outlook
	000000	•0	000000	

- ► TCDIs centred using beam-based measurement ⇒ new operational tool does it automatically;
- calibration of BLM shooting a pilot on a closed jaw at -5 σ;
- gaps set to 5 σ ;
- oscillations in the lines with amplitude of 5 σ for each phase sampled;
- check if the expected phase-space coverage is guaranteed.

・ロト ・ 理ト ・ ヨト ・ ヨト

3

Dac

- I	ntroduction	TCDI Setup Validation Simulations	Injection Failures Simulations	C
0	00000	•0	000000	

- ► TCDIs centred using beam-based measurement ⇒ new operational tool does it automatically;
- calibration of BLM shooting a pilot on a closed jaw at -5 σ;
- gaps set to 5 σ ;
- oscillations in the lines with amplitude of 5 σ for each phase sampled;
- check if the expected phase-space coverage is guaranteed.

Simulations and Measurements

- Measured trajectory reconstructed with MADX using SVD;
- ▶ loss maps generated with MADX-PTC + pycollimate.

<ロト < 部 > < 注 > < 注 > < 注 > のへの

Simulations and Measurements

- Measured trajectory reconstructed with MADX using SVD;
- ▶ loss maps generated with MADX-PTC + pycollimate.

Simulations and Measurements

- Measured trajectory reconstructed with MADX using SVD;
- Ioss maps generated with MADX-PTC + pycollimate.

Simulations and Measurements

- Measured trajectory reconstructed with MADX using SVD;
- Ioss maps generated with MADX-PTC + pycollimate.

Simulations and Measurements

- Measured trajectory reconstructed with MADX using SVD;
- Ioss maps generated with MADX-PTC + pycollimate.

New TDI-S

► For HL-LHC a new TDI is foreseen to be installed;

New TDI-S

- ► For HL-LHC a new TDI is foreseen to be installed;
- ► to date, the most likely design foresees:
 - 3 separate blocks: 2 of graphite (R4550 or similar) and 1 block of higher Z material (the following simulations have been done assuming aluminium);

New TDI-S

- ► For HL-LHC a new TDI is foreseen to be installed;
- ► to date, the most likely design foresees:
 - 3 separate blocks: 2 of graphite (R4550 or similar) and 1 block of higher Z material (the following simulations have been done assuming aluminium);
- ► the last block has 2 mm larger aperture than the others.

- The following studies are done using:
 - MKI strength of ~11% of the nominal for B1 \Rightarrow grazing (zero impact parameter);
 - ▶ MKI strength of ~9.5% of the nominal for B2 \Rightarrow grazing (zero impact parameter);

- The following studies are done using:
 - MKI strength of ~11% of the nominal for B1 \Rightarrow grazing (zero impact parameter);
 - ▶ MKI strength of ~9.5% of the nominal for B2 \Rightarrow grazing (zero impact parameter);
 - tracking of the primaries done using MADX + pycollimate (IPAC15 for more details);

- The following studies are done using:
 - MKI strength of ~11% of the nominal for B1 \Rightarrow grazing (zero impact parameter);
 - ▶ MKI strength of ~9.5% of the nominal for B2 \Rightarrow grazing (zero impact parameter);
 - tracking of the primaries done using MADX + pycollimate (IPAC15 for more details);
 - Normalised emittance used $\Rightarrow \epsilon_{x,y}^N = 1.37 \ \pi \text{mm.mrad};$

- The following studies are done using:
 - MKI strength of ~11% of the nominal for B1 \Rightarrow grazing (zero impact parameter);
 - MKI strength of ~9.5% of the nominal for B2 \Rightarrow grazing (zero impact parameter);
 - tracking of the primaries done using MADX + pycollimate (IPAC15 for more details);
 - Normalised emittance used $\Rightarrow c_{x,y}^N = 1.37 \ \pi \text{mm.mrad};$
 - ► TDI-S, TCLIA and TCLIB nominal half-gaps $6.8\sigma_y \Rightarrow$ scenario 0;

- The following studies are done using:
 - MKI strength of ~11% of the nominal for B1 \Rightarrow grazing (zero impact parameter);
 - MKI strength of ~9.5% of the nominal for B2 \Rightarrow grazing (zero impact parameter);
 - tracking of the primaries done using MADX + pycollimate (IPAC15 for more details);
 - Normalised emittance used $\Rightarrow c_{x,y}^N = 1.37 \ \pi \text{mm.mrad};$
 - ► TDI-S, TCLIA and TCLIB nominal half-gaps $6.8\sigma_y \Rightarrow$ scenario 0;
 - TDI-S half-gap of 7.8 σ_y and TCLIA/B with half-gap of 6.8 $\sigma_y \Rightarrow$ scenario 1 ;

- The following studies are done using:
 - MKI strength of ~11% of the nominal for B1 \Rightarrow grazing (zero impact parameter);
 - MKI strength of ~9.5% of the nominal for B2 \Rightarrow grazing (zero impact parameter);
 - tracking of the primaries done using MADX + pycollimate (IPAC15 for more details);
 - Normalised emittance used $\Rightarrow c_{x,y}^N = 1.37 \ \pi \text{mm.mrad};$
 - ► TDI-S, TCLIA and TCLIB nominal half-gaps $6.8\sigma_y \Rightarrow$ scenario 0;
 - ► TDI-S half-gap of 7.8 σ_y and TCLIA/B with half-gap of 6.8 σ_y \Rightarrow scenario 1 ;
 - TDI-S, TCLIA and TCLIB half-gaps 7.8 $\sigma_y \Rightarrow$ scenario 2 ;

Conclusions and Outlook

Loss maps at injection - Beam 1

Scenario 0

- TDI-S, TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S
- tracking for 1 turn:

Scenario 1

- TDI-S at 7.8 σ_y, TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S
- tracking for 1 turn:

Scenario 2

- TDI-S, TCLIA and TCLIB at 7.8 σ_y and 1 σ impact on the TDI-S
- tracking for 1 turn:

20

Conclusions and Outlook

Loss maps at injection - Beam 1

Scenario 0

- TDI-S, TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S
- tracking for 1 turn:

Scenario 1

- TDI-S at 7.8 σ_y, TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S
- tracking for 1 turn:

Scenario 2

- TDI-S, TCLIA and TCLIB at 7.8 σ_y and 1 σ impact on the TDI-S
- tracking for 1 turn:

Scenario 0

 TDI-S, TCLIA and TCLIB at
6.8 σ_y and grazing impact on the TDI-S

Scenario 0 \Rightarrow TCLIB @ 8.3 σ

Conclusions and Outlook

What happens to the surviving particles?

Scenario 0

 TDI-S, TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S

Scenario 0 \Rightarrow TCLIB @ 8.3 σ

Conclusions and Outlook

What happens to the surviving particles?

Scenario 0

 TDI-S, TCLIA and TCLIB at
6.8 σ_y and grazing impact on the TDI-S

Scenario 0 \Rightarrow TCLIB @ 8.3 σ

Conclusions and Outlook

What happens to the surviving particles?

Scenario 0

 TDI-S, TCLIA and TCLIB at
6.8 σ_y and grazing impact on the TDI-S

Scenario 0 \Rightarrow TCLIB @ 8.3 σ

Conclusions and Outlook

What happens to the surviving particles?

Scenario 0

 TDI-S, TCLIA and TCLIB at
6.8 σ_y and grazing impact on the TDI-S

Scenario 0 \Rightarrow TCLIB @ 8.3 σ

Conclusions and Outlook

What happens to the surviving particles?

Scenario 0

 TDI-S, TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S

Scenario 0 \Rightarrow TCLIB @ 8.3 σ

Conclusions and Outlook

What happens to the surviving particles?

Scenario 0

 TDI-S, TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S

Scenario 0 \Rightarrow TCLIB @ 8.3 σ

Conclusions and Outlook

What happens to the surviving particles?

Scenario 0

 TDI-S, TCLIA and TCLIB at
6.8 σ_y and grazing impact on the TDI-S

Scenario 0 \Rightarrow TCLIB @ 8.3 σ

Conclusions and Outlook

What happens to the surviving particles?

Scenario 0

 TDI-S, TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S

Scenario 0 \Rightarrow TCLIB @ 8.3 σ

Conclusions and Outlook

What happens to the surviving particles?

Scenario 0

 TDI-S, TCLIA and TCLIB at
6.8 σ_y and grazing impact on the TDI-S

Scenario 0 \Rightarrow TCLIB @ 8.3 σ

TCLIB - Zoom in

To be noticed that, when the TCLIB is at 6.8 σ , a quite significant part of the beam will intercept it at the third turn (just before dump)

Loss maps at injection - Beam 2

Scenario 0

- TDI-S, TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S
- tracking for 1 turn:

Scenario 1

- TDI-S at 7.8 σ_y, TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S
- tracking for 1 turn:

Scenario 2

- TDI-S, TCLIA and TCLIB at 7.8 σ_y and 1 σ impact on the TDI-S
- tracking for 1 turn:

Conclusions and Outlook

Loss maps at injection - Beam 2

Scenario 0

- TDI-S, TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S
- tracking for 1 turn:

Scenario 1

- TDI-S at 7.8 σ_y, TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S
- tracking for 1 turn:

Scenario 2

- TDI-S, TCLIA and TCLIB at 7.8 σ_y and 1 σ impact on the TDI-S
- tracking for 1 turn:

20

Scenario 0

 TDI-S, TCLIA and TCLIB at
6.8 σ_y and grazing impact on the TDI-S

Scenario 0 \Rightarrow TCLIB @ 8.3 σ

Scenario 0

 TDI-S, TCLIA and TCLIB at
6.8 σ_y and grazing impact on the TDI-S

Scenario 0 \Rightarrow TCLIB @ 8.3 σ

Scenario 0

 TDI-S, TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S

Scenario 0 \Rightarrow TCLIB @ 8.3 σ

Scenario 0

 TDI-S, TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S

Scenario 0 \Rightarrow TCLIB @ 8.3 σ

Scenario 0

 TDI-S, TCLIA and TCLIB at
6.8 σ_y and grazing impact on the TDI-S

Scenario 0 \Rightarrow TCLIB @ 8.3 σ

Scenario 0

 TDI-S, TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S

Scenario 0 \Rightarrow TCLIB @ 8.3 σ

Scenario 0

 TDI-S, TCLIA and TCLIB at
6.8 σ_y and grazing impact on the TDI-S

Scenario 0 \Rightarrow TCLIB @ 8.3 σ

Scenario 0

 TDI-S, TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S

Scenario 0 \Rightarrow TCLIB @ 8.3 σ

Scenario 0

 TDI-S, TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S

Scenario 0 \Rightarrow TCLIB @ 8.3 σ

Scenario 0

 TDI-S, TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S

Scenario 0 \Rightarrow TCLIB @ 8.3 σ

Conclusions and Outlook

- To perform tracking of primary protons, taking into account also the ones scattered from collimators, in the SPS-to-LHC transfer lines a scattering routine has been implemented and interfaced with MADX and MADX-PTC;
- simulations of the expected loss maps for the TCDIs setup validation have been performed, as well as benchmarked with actual beam measurements;
- ► the same simulation tools have been used to evaluate the injection protection system with HL-LHC beams;
- studies to evaluate different settings of the injection protection absorbers are ongoing;
- the same tool will be also used to estimate the danger of an asynchronous extraction from the SPS for the TL elements (and injection into LHC as well) (M. Fraser);
- ► LHC asynchronous beam dump studies and benchmark calibration measurements for TCDQ re-qualification (C. Bracco).

Introduction	TCDI	Setup	Validation	Simulations
000000	00			

Thank you!

▲ロト ▲昼 ▶ ▲ 臣 ▶ ▲ 臣 ■ ● ○ ○ ○ ○