Fluka Coupling for SPS Scrapers

R. B. Appleby, F. Cerutti, A. Mereghetti

WP5 Tracking Workshop, CERN, 30th Oct 2015
Outline

• Introduction
 • The SPS scrapers: what, why, where;
 • The upgrade proposal (LIU);

• Comparison between the two systems
 • To highlight main assets / liabilities;

• The burst test
 • To verify with beam high level of endep predicted by simulations (blade damage);

• Benchmark of simulation tool
 • BCT and BLM signals;
Introduction
The SPS Scrapers - *Present Devices*

- Movable graphite blades, swept through the beam to remove tails just before extraction to the LHC;
- Used for ensuring a clean injection into the LHC;

A fast cleaning system!
Upgrade: the LIU SPS Scrapers

Present system: mechanical device swept through the beam; Graphite, 1.83 g/cm³

LIU proposal*: beam steered against a static, long absorber; Graphite, 1.67 g/cm³

- Beam steering with magnetic bump:
 - more control on beam-impact conditions (endep + cleaning speed);
 - No mechanical movements → no wear;
 - More complex system;

- Longer absorber:
 - Higher prob. of inel. interaction per single passage → less passages per single proton (endep + cleaning speed);
 - Different endep regime (EM);
 - softer spectra of escaping particles

- Characterisation of both systems:
 - Endep in intercepting medium;
 - Evolution of beam intensity with time during scraping;
 - Losses around the ring;

- Explored parameters:
 - Present system: blade speed and material, scraping position, blade tilt, FT vs ramp;
 - LIU scrapers: bump speed, absorber length, tilt;

Not all covered here! → see Ph.D. thesis

Comparison of Systems
Studies: Numerical Simulations

- Performance of the two systems evaluated by means of numerical simulations, as these are predictive tools, useful especially for design / optimisation;

- Multi-turn effects are important for cleaning systems on circular machines;

- Even more relevant for scrapers presently installed, esp. for evaluating endep:
 - Blades are scatterer extremely thin: graphite, 1 cm; on average, 45 passages before undergoing a nuclear inelastic event;
 - Blades move: change in the distance between beam and blade with time;

- Take advantage of:
 - Models of particle-matter interaction in Fluka;
 - Description of single particle beam dynamics in synchrotrons in SixTrack;

- In the following:
 - Quick insight into main results (no time to go through!! e.g. BLM threshold for protecting blades against damage);
 - Few, meaningful technical details;

Beam-absorber relative distance changes over time; simulation in a “continuous” way requires on-line endep and aperture check!
Energy Deposition

Scenario: 0σ scraping, i.e. the whole beam is scraped away, incl. core, not only tails; → Somehow extreme, but the worst one we can think of;

Tech: bump rising simulated with embryonic DYNK module

<table>
<thead>
<tr>
<th>Scraper</th>
<th>ε_N [μm]</th>
<th>σ_δ [10^4]</th>
<th>E_{max} [GeV/cm3]</th>
<th>N_p [10^{11}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>1</td>
<td>1</td>
<td>30-35</td>
<td>1.15</td>
</tr>
<tr>
<td>LIU</td>
<td>2.5</td>
<td>5.25</td>
<td>10-11</td>
<td>2.5</td>
</tr>
</tbody>
</table>

16-17 GeV/cm3 @ $\varepsilon_N = 1$ μm >> 12.8 kJ/cm3 = \[\int_{T_{\text{amb}}}^{T_{\text{sub}}} c_v \, dT \]

General remarks:
- **endep collapsed** on very first layers of material – cleaning plane;
- non-cleaning plane: endep keeps memory of beam size → dependence on σ;
- **Speed**: relevant for present scrapers; less important for LIU ones;
- **Tilt**: relevant for both → no knob in case of present system;
- **Longer medium** can help;

Not covered here! → see Ph.D. thesis

Tech: moving bodies in Fluka

Beam movement

Beam
Beam Intensity vs Time

Present scraper
- Dependence on blade properties: material, length and speed (not linear);
- No big dependence on tilt angle but for one particular case (see benchmark);

Tech: permanent mag. bump in LSS1 + double Gaussian distribution + ramping (in 1 simulation), starting from 393 GeV;

LIU scraper
- Almost linear dependence on speed of rising the bump up (long absorber, high prob. of inel. inter.);
- No big dependence on tilt angle;
- No relevant improvement in deploying an even longer absorber;
Loss Maps

H systems, cut at 440 GeV/c ($\delta = \sim 2\%$)

Net gain: factor 2

Losses mainly localized locally at absorber and in downstream DS/arc

Tech: online aperture check
The Burst Test
The Burst Test (16th Feb 2013)

Aim: to verify with beam the high values of endep in the blade predicted by simulations → let’s scrape away the whole SPS beam, i.e. 288b, 1.15 \(10^{11}\) p/b;

Vacuum spikes (>300m) at test of blades, signs of induced damage

Change in crystallographic state

Change in porosity
(F. Leaux, EDMS 1339153)
Premature Dump During Test and Estimation of Endep

Dump trigger (BLM) retrieved from Timber:

SPS → kickers → beam dump → MKD.117:TRIGGER_CYCLE_TIME

Comparing with BCT signal:
- H blade: ~20% scraped \(\Rightarrow\) 20-24 kJ cm\(^{-3}\);
- V blade: ~30% scraped \(\Rightarrow\) 27-37 kJ cm\(^{-3}\);

Confirmed: amount of beam scraped leads to local sublimation (vacuum spikes);

\[R_{i,k} = s R_{i,scrp} + (1-s) R_{i,dump} \]

- combination of signals at full beam scraping (1x12b) and from dump of full beam (4x72b), to reconstruct the BLM pattern that should have been measured:
- H blade: \(s=38\%\) scraped \(\Rightarrow\) 37-46 kJ cm\(^{-3}\);
- V blade: \(s=44\%\) scraped \(\Rightarrow\) 38-53 kJ cm\(^{-3}\);

Confirmed: only a fraction of beam was scraped (premature dump);
Did We Affect the Performance?

Regular scraping (i.e. at 3σ/4σ) performed before (light colors) and after test (dark colors), to spot possible loss of performance.

Change in fraction of surviving population too small wrt measurements;

Apparent loss of performance must be due to change in beam profile / emittance, or a drift in close orbit;

30% - 10% porosity, Exaggerated tilt angles, especially on H (see benchmark)

Tech: biased beam distribution (double gaussian), to focus on tails only.
The Benchmark
BCT Signals – H Blade

- Benchmark against time evolution of beam intensity during scraping, to get actual speed and tilt angle of blade;
 - \(H: \) 6-8 cm/s, 3-4°;
 - \(V: \) <6 cm/s, <0.5°;
- Several scraping positions tested, used also to diagnose the beam distribution;

\[
\begin{align*}
\text{Scraping at 500} \ \mu\text{m (1x12b)} \\
\text{Scraping at 2.2mm (4x72b)} \\
\text{Scraping at 500} \ \mu\text{m (1x12b)} \\
\text{0} \sigma \text{ scraping (1x12b)}
\end{align*}
\]
BLM Signals

- Fluka-SixTrack coupled simulations with full geometry of LSS1 downstream of scrapers (incl. magnets);
- Benchmark against BLMs in absolute values – 1st with SPS ones;
- Simulation results dramatically dependent on BLM positions – some discrepancies between technical drawings;
Conclusions

• Scrapers are installed in the SPS to provide the LHC with a clean injection;
 • Fast system, made of movable blades swept through the beam;

• LIU project: proposal of upgrade, for improving performances;
 • Made of a static absorber block against which the beam is steered for scraping;

• Comparison of performance of the two systems;
 • By means of numerical simulations - Fluka-SixTrack coupling;
 • Based on 0 σ scraping:
 • Worst scenario in terms of endep;
 • Regular, operational scraping involves only tails;
 • Diagnostics tool: lower beam intensities;
 • Characterisation: endep in absorbing medium, evolution of beam intensity with time, losses induced around the ring;

• A burst test was carried out to verify damage levels in blade of present system – signs of damage found;

• Benchmark of simulation tool against BCT readouts during scraping (blade speed/tilt) and BLM signals in LSS1 (absolute values);
Spare Slides
Checking DYNK

![Graph showing x_{co} and Δx_{co} over turns with and without sextupoles.](image)

Magnet powering
Checking the Fluka-SixTrack Coupling

Two consecutive nuclear elastic events (one per turn)

Ionisation (hard knock-on)

Rutherford scattering

WP5 WS - 30/10/2015 A. Mereghetti et al.
Checking SixTrack Tracking with Acceleration

BCT signal - 2013-02-16, 08:16:44:005
RF program
simulation - beam current
simulation - average beam momentum

Beam Intensity [%]

18100 18120 18140 18160 18180 18200 t [ms]

100 80 60 40 20 0 pc [GeV]

392 394 396 398 400 402
Single Scattering Events

Comparison of H systems

Present system

Areas are normalised to all events

Upgraded system

Areas are normalised to total number of passages through the absorber - $N_{tot}=319481$
Losses and Last Scattering Event

Comparison of H systems

Present system

Upgraded system
BCT Signals and Beam Characterisation

Averages at different scraping positions

Beam characterisation
Playing with BLM Signals

- **Real scraping pattern** (regular scraping)
- **Saturated scraping pattern** (0σ scraping)
- **Little contribution from scraping pattern on top of dump signal**
- **Real scraping pattern** (0σ scraping)

WP5 WS - 30/10/2015

A. Mereghetti et al.
BCT Signals – V Blade

- **Benchmark** against time evolution of beam intensity during scraping, to get actual speed and tilt angle of blade;
 - H: 6-8 cm/s, 3-4°;
 - V: <6 cm/s, <0.5°;
- Several scraping positions tested, used also to diagnose the beam distribution;