Simulation Tools for Heavy-Ion Collimation

Pascal D. Hermes

With valuable contributions from :

R. Bruce, F. Cerutti, R. De Maria, A. Ferrari, A. Lechner, P. Ortega, S. Redaelli, J. M. Jowett, A. Mereghetti, E. Skordis, V. Vlachoudis

CERN, University of Münster

30.10.2015

Work supported by the Wolfgang-Gentner-Programme of the Bundesministerium für Bildung und Forschung (BMBF)

Contents

The Importance of Ion Collimation

Simulation Tools for Ion Collimation History Physics Aspects

Heavy-Ion SixTrack

Summary and Outlook

Ion collimation - why think about it?

Stored beam energy in the LHC for protons and ions

$$E_{\rm tot}^p/E_{\rm tot}^{Pb} \approx 100$$

Collimation system provides excellent cleaning for protons why should ion collimation be critical?

Ion collimation - why think about it?

Stored beam energy in the LHC for protons and ions

$$E_{\rm tot}^p/E_{\rm tot}^{Pb}pprox 100$$

- Collimation system provides excellent cleaning for protons why should ion collimation be critical?
- Ion cleaning is much less efficient than proton cleaning

$$\eta_{Pb}/\eta_{p} pprox 100$$

Quenches might also be caused by ion cleaning losses !

Proton vs. Ion losses

Introduction The LHC Collimation system - protons

- lons are subject to fragmentation into other isotopes with different mass to charge ratio
- Often they are not scattered into the secondary collimators

The LHC Collimation system - ions

- Ions are subject to fragmentation
- Many heavy-ion fragments are not scattered enough
- Many end up in the arcs where the dispersion increases !

The key ingredients for ion collimation simulation

The key ingredients for ion collimation simulation

Appropriate Tracking

- Chromatic effects
- Mass to charge ratio of different isotopes

The key ingredients for ion collimation simulation

- Chromatic effects
- Mass to charge ratio of different isotopes

Fragmentation Simulation

 Species, momentum, direction of in- and outcoming ions

History

2008 ICOSIM (Ion COllimation SIMulation)

- Linear chromatic tracking
- Simplified fragmentation at all collimators
- Good agreement with measurements, especially in DS

2014 STIER (SixTrack with Ion-Equivalent Rigidities)

- SixTrack : Chromatic tracking up to 20th order
- Detailed fragmentation at TCP only
- Better agreement with measurement in arc and DS

2015 hiSix (heavy-ion SixTrack)

- Chromatic tracking up to 20th order
- SixTrack-FLUKA coupling adopted for ions : detailed fragmentation at all collimators
- ▶ Test phase we hope for even better agreement with data

History

2008 ICOSIM (Ion COllimation SIMulation)

- Linear chromatic tracking
- Simplified fragmentation at all collimators
- Good agreement with measurements, especially in DS

2014 STIER (SixTrack with Ion-Equivalent Rigidities)

- SixTrack : Chromatic tracking up to 20th order
- Detailed fragmentation at TCP only
- Better agreement with measurement in arc and DS

2015 hiSix (heavy-ion SixTrack)

- Chromatic tracking up to 20th order
- SixTrack-FLUKA coupling adopted for ions : detailed fragmentation at all collimators
- ▶ Test phase we hope for even better agreement with data

History

- 2008 ICOSIM (Ion COllimation SIMulation)
 - Linear chromatic tracking
 - Simplified fragmentation at all collimators
 - Good agreement with measurements, especially in DS
- 2014 STIER (SixTrack with Ion-Equivalent Rigidities)
 - SixTrack : Chromatic tracking up to 20th order
 - Detailed fragmentation at TCP only
 - Better agreement with measurement in arc and DS
- 2015 hiSix (heavy-ion SixTrack)
 - Chromatic tracking up to 20th order
 - SixTrack-FLUKA coupling adopted for ions : detailed fragmentation at all collimators
 - ► Test phase we hope for even better agreement with data

Simulation tools for ion collimation History

2008 ICOSIM (Ion COllimation SIMulation)

- Linear chromatic tracking
- Simplified fragmentation at all collimators
- Good agreement with measurements, especially in DS

2014 STIER (SixTrack with Ion-Equivalent Rigidities)

- SixTrack : Chromatic tracking up to 20th order
- Detailed fragmentation at TCP only
- Better agreement with measurement in arc and DS
- 2015 hiSix (heavy-ion SixTrack)
 - Chromatic tracking up to 20th order
 - SixTrack-FLUKA coupling adopted for ions : detailed fragmentation at all collimators
 - Test phase we hope for even better agreement with data

Simulated vs. Measured Loss Maps

The key ingredients for ion collimation simulation

What has changed from STIER to hiSix?

Heavy-Ion Tracking

Chromatic and isotopic dispersion

Heavy-Ion Tracking

Chromatic and isotopic dispersion

• Momentum offset in mono-isotopic case $m = m_0$, $q = q_0$:

$$\frac{\rho}{\rho_0} = \frac{\beta\gamma}{\beta_0\gamma_0} = (1+\delta) \qquad \qquad \delta = \frac{\beta\gamma - \beta_0\gamma_0}{\beta_0\gamma_0} = \frac{P - P_0}{P_0}$$

Heavy-Ion Tracking

Chromatic and isotopic dispersion

• Momentum offset in mono-isotopic case $m = m_0$, $q = q_0$:

$$\frac{\rho}{\rho_0} = \frac{\beta\gamma}{\beta_0\gamma_0} = (1+\delta) \qquad \qquad \delta = \frac{\beta\gamma - \beta_0\gamma_0}{\beta_0\gamma_0} = \frac{P - P_0}{P_0}$$

▶ If different isotopes $m \neq m_0$, $q \neq q_0$ are in the machine

$$\frac{\rho}{\rho_0} = \frac{q_0}{q} \frac{m}{m_0} \frac{\beta \gamma}{\beta_0 \gamma_0} = \frac{(1+\delta)}{\chi} \qquad \delta = \frac{\beta \gamma - \beta_0 \gamma_0}{\beta_0 \gamma_0} = \frac{P \frac{m_0}{m} - P_0}{P_0}$$

Implementation of the isotopic dispersion - STIER

Implementation of the isotopic dispersion - STIER

How can we implement this?

Effective Momentum Approach

 Track particles of the reference species, but use ion equivalent rigidities by applying

$$\delta_{
m eff} = rac{1+\delta}{\chi} - 1$$

- Advantage : quick and simple approach
- No need to change tracking maps only the initial distribution

Implementation of the isotopic dispersion - STIER

How can we implement this?

Effective Momentum Approach

 Track particles of the reference species, but use ion equivalent rigidities by applying

$$\delta_{
m eff} = rac{1+\delta}{\chi} - 1$$

- Advantage : quick and simple approach
- No need to change tracking maps only the initial distribution
- Only applicable to magnetic lattice elements, no cavities etc.

 Used in STIER (SixTrack with Ion Equivalent Rigidities)

Implementation of the isotopic dispersion - hiSix

New accelerator Hamiltonian

 Re-define accelerator Hamiltonian : incorporate new definition of δ, χ

$$\mathcal{H}=-\sqrt{(1+\delta)^2-(ilde{p}_{\mathsf{x}}-\chi \mathsf{a}_{\mathsf{x}})^2-(ilde{p}_{\mathsf{y}}-\chi \mathsf{a}_{\mathsf{y}})^2}-\chi \mathsf{a}_{\mathsf{z}}$$

Implementation of the isotopic dispersion - hiSix

How can we implement this?

New accelerator Hamiltonian

 Re-define accelerator Hamiltonian : incorporate new definition of δ, χ

$$\mathcal{H}=-\sqrt{(1+\delta)^2-(ilde{p}_x-\chi a_x)^2-(ilde{p}_y-\chi a_y)^2}-\chi a_z$$

Derive symplectic tracking maps;
 e.g. p_x for transverse kicker dipole :

$$p_x^f o p_x^i - {oldsymbol \chi} \, k_0 \, L$$

Implementation of the isotopic dispersion - hiSix

How can we implement this?

New accelerator Hamiltonian

 Re-define accelerator Hamiltonian : incorporate new definition of δ, χ

$$\mathcal{H}=-\sqrt{(1+\delta)^2-(ilde{
ho}_x-\chi a_x)^2-(ilde{
ho}_y-\chi a_y)^2}-\chi a_z$$

Derive symplectic tracking maps;
 e.g. p_x for transverse kicker dipole :

$$p_x^f o p_x^i - {oldsymbol \chi} \, k_0 \, L$$

- Universal : applicable to all beam line elements
- All tracking maps must be re-derived
- Implemented in hiSix

Fragmentation Simulation in STIER

- Passive coupling : Initial fragmentation simulation (e.g. at the TCP) and tracking without interactions at other collimators
- Can be done with two separate runs of FLUKA and SixTrack
- Used in STIER to track ion fragments from the TCP

Fragmentation Simulation in hiSix

- Active coupling : particles sent to Monte Carlo software at every collimator location, fragments sent back to tracker
- Available framework : SixTrack-FLUKA coupling (protons)
- Used for hiSix in an ion-adapted framework

 Aim : Make SixTrack accessible for heavy-ion tracking and collimation studies

- Aim : Make SixTrack accessible for heavy-ion tracking and collimation studies
- ► New tracking maps derived from generalized Hamiltonian, adapted for ions of any species → implemented

- Aim : Make SixTrack accessible for heavy-ion tracking and collimation studies
- ► New tracking maps derived from generalized Hamiltonian, adapted for ions of any species → implemented
- ► Modify SixTrack-FLUKA coupling simulates fragmentation and sends back ion fragments to the tracker → implemented

- Aim : Make SixTrack accessible for heavy-ion tracking and collimation studies
- ► New tracking maps derived from generalized Hamiltonian, adapted for ions of any species → implemented
- ► Modify SixTrack-FLUKA coupling simulates fragmentation and sends back ion fragments to the tracker → implemented
- Still in beta phase, tests ongoing to check tracking behaviour, fragmentation, loss map generation ...

- Aim : Make SixTrack accessible for heavy-ion tracking and collimation studies
- ► New tracking maps derived from generalized Hamiltonian, adapted for ions of any species → implemented
- ► Modify SixTrack-FLUKA coupling simulates fragmentation and sends back ion fragments to the tracker → implemented
- Still in beta phase, tests ongoing to check tracking behaviour, fragmentation, loss map generation ...
- We hope for better agreement with measured loss maps compared to ICOSIM and STIER

Joint tracking and fragmentation in hiSix

Joint tracking and fragmentation in hiSix

Joint tracking and fragmentation in hiSix

Summary and Outlook

- Fragmentation : Ion collimation efficiency worse than for p
- Simulation requires appropriate implementation of tracking and fragmentation
- Former software with simplified tracking and/or fragmentation modelling
- Presently developed heavy-ion SixTrack expected to provide better agreement with measured data
- First loss map simulations expected soon