
BDSIM Development !
2014 - 2015!

L. Nevay, J. Snuverink, S. Boogert, !
H. Garcia-Morales, S. Gibson, L. Deacon !

R. Kwee-Hinzmann, S. Walker, A. Abramov !
!

30th October 2015!
(LHC – not coaxial cable)!

2

Beam Delivery Simulation - BDSIM!

•  Tracking code that uses Geant4!
•  Open source C++!
•  Automatically builds Geant4 model!
•  Uses MadX-like syntax for test input!
•  Mixes normal accelerator tracking &

Monte Carlo particle physics!
•  Full showers of secondaries created

by Geant4 processes!
•  Ability to simulate synchrotron

radiation!
•  Simulate energy deposition and

detector backgrounds!
•  Ability to import external geometry and

field maps!

BDSIM accelerator!

LHC dipole!

3

Previously…!
•  Initial conversion and loss maps using BDISM!
•  First Geant4 based loss map of LHC!
•  Simplistic geometry!

―  symmetric geometry!
―  only circular & elliptical aperture!

4

BDSIM Development!
•  BDSIM heavily developed since 2012 / 2013!
•  Recent development followed 3 main themes:!

•  Geometry!
•  Tracking!
•  Physics processes!

•  Previous questions & issues fell into these three categories!

•  LHC Specific developments!
•  Documentation & general development !
•  Analysis tools & workflow!

5

Geometry!
•  Previous geometry relatively simple!

―  Adequate for conceptual studies!
―  Great detail required for real machines!

•  Main geometry library rewritten!
•  Extensive use of factory pattern!

―  Each factory represents a style and can make every type of say magnet!

•  6 different aperture types (including detailed LHC)!
•  6 different magnet styles (again with LHC style)!
•  4 different tunnel styles!

―  can follow the beam line!
―  will be able to have external geometry and customise for certain ranges!

•  Most importantly all geometry works together!
•  Any beam pipe will work with any magnet!!
•  Very simple to extend with new geometry!

―  guaranteed to work with all magnets!

•  New collimators by H. Garcia-Morales!

6

Geometry!
•  6 aperture models!

―  circular, rectangular, elliptical, lhc, lhcdetailed, rectellipse!

•  Modelled on MadX aperture parameterisation!
•  Works with any other geometry!
•  6 different magnet styles!

LHC detailed! Elliptical!

Rectangular !
/ square!

LHC screen!

RectEllipse!

Circular!

LHC Style!

Poles circular yoke!

Poles square yoke!

SRF Cavities!
(S. Walker)!

7

Tunnel Geometry!
•  Was only partially implemented previously!
•  Rewritten using factories!
•  Currently 4 different styles!
•  Can automatically follow beam line!
•  Can describe different styles for different sections*!
•  Can use external geometry for sections*!

* nearly complete!

8

External Geometry?!
•  For when the generic components just won’t suffice!
•  Can import external geometry!

―  SQL, Mokka, GDML, STL!

•  Can also overlay field maps and interpolate!
―  2D, 3D, etc.!

•  You can also export to GDML from BDSIM!!

SQL Mokka example!GDML LHCb!

9

Tracking!
•  Quantitative comparison with PTC & SixTrack underway!
•  Very good agreement with PTC!

―  Tracking & optical function calculation!

•  Factorising tracking into library!
―  will reduce tracking time by order of magnitude!
―  Will allow choice of integrators!
―  Will be able to use other tracking libraries shortly!
―  Expected complete early 2016!

�0.0006 0.0000 0.0006
x(m)

�2.0

0.0

1.5

R
es

id
u
al

s x
(m

)

⇥10�7

6
12
18
24
30
36
42
48
54

C
ou

nt
s

�0.00004 0.00000 0.00004
y(m)

�8

0

8

R
es

id
u
al

s y
(m

)

⇥10�9

20
40
60
80
100
120
140
160
180

C
ou

nt
s

�0.00010 0.00000 0.00015
xp(rad)

�3

0

3

R
es

id
u
al

s x
p
(r

ad
)

⇥10�8

10

20

30

40

50

60

70

80

C
ou

nt
s

�0.00002 0.00000 0.00002
yp(rad)

�3

0

3

R
es

id
u
al

s y
p
(r

ad
)

⇥10�9

25
50
75
100
125
150
175
200
225

C
ou

nt
s

Double Bend Achromat agreement with PTC!

A. Abramov!

10

Symplecticity!
•  Clearly not symplectic!
•  Factorising into a tracking library opens door to this!
•  Track first and test aperture continuously!
•  When approaches aperture -> shift to Geant4 model!
•  Non-symplectic tracking sufficient from then on!

―  impact inherently non-symplectic!!

•  Faster!
―  get the particle to the impact point!

•  Ideally use an external library!!

Bill Abbott http://www.toonpool.com/!

Current LHC model very stable to 1000s of turns!

11

Physics & Processes!
•  Benefit from regular Geant4 updates to many many

models!
•  Moved entirely to range cuts!

―  several bugs fixed in this!

•  Cut particles not on energy but on range to produce a
secondary particle!

•  Much more accurate stopping location!
―  and therefore energy deposition!

•  Improved physics accuracy for lower CPU usage!
•  Modular physics list implemented in Geant4!

―  can mix and add to physics processes very easily!

•  Remember, if it can be wrapped in C++, you can add the
physical processes!

12

Processes!
•  Quantitative comparison of scattering cross-sections on-going!
•  Benefiting from updated Geant4 all the time!
•  Example spectra from scattering at end of TCP!

―  1 x 108 primaries simulated!

13

Process Biasing!
•  Introduced interface to Geant4 process biasing!
•  Any process for any particle can be biased for any volume or

set of volumes!

•  Extremely flexible interface!
•  Attach to vacuum or general accelerator material!
•  Previously required specially written wrapper class for each!

S. Boogert!

Define bias ‘object’!
which particles!

which processes! cross-section scaling!

primary, secondaries!
or all!

attach sets of biases to objects!

14

LHC Specific Developments!
•  Beam pipe geometry & magnet style!
•  Most development can and has been very general!
•  Rewriting of geometry was necessary!

―  gives the required aperture flexibility!
―  key to correct results!!

•  Python utilities extend for large automatic conversion!
―  definitely required for the LHC!
―  now integral part of work flow for all studies!

•  Primary trouble in piecing together information!
•  Aperture information significantly different from magnetic!
•  Tools nearly finished to split and match elements!

15

Loss Map & 6T Hits -> Loss Map!
•  Unfortunately, this will have to follow!
•  Significant time to get aperture correct!
•  Large combination of files in many formats to be

converted!
•  Model must be carefully checked!
•  Will present at ColUSM in November!

SixTrack – particle tracking only!

Beam Loss Monitors!

BDSIM!?	

16

Direct Injection!
•  Had the ability to read out in curvilinear coordinates – now in too!
•  Introduced ability to inject particles anywhere in lattice!
•  Any beam distribution as function of S!

―  Interpolation of trajectory within arcs!
―  Efficient look up of transforms!

•  Sixtrack loader written by R. Kwee!
•  Can therefore convert SixTrack hits to energy deposition!

reference particle !
starts here!

exits on 0,0!

17

Code & Software Develoment!
•  60 000 lines of C++!
•  Revised class hierarchy & factory patterns – improved geometry!
•  Increased factorisation – much easier to extend!
•  Consolidation of development branches!
•  C++ 11 adoption & latest versions of Geant4, ROOT, CLHEP, !
•  Parser significantly revised by J. Snuverink!

―  memory leaks, and problems fixed!
―  written in object-orientated C++!

•  CTest test suite, CMake build system!
―  much easier to use as compared to old configuration scripts!

•  CDash nightly and on demand automated building & testing!
•  Issue tracking & reporting!
•  Built in configuration for AFS!
•  Automated manual updates!
•  Regular release cycle!

18

Output Analysis!
•  ASCII & ROOT output formats!
•  ASCII useful for initial and single particle trials!

―  ASCII isn’t suited to large data!
―  ASCII inefficient storage and not as strongly structured!

•  ROOT output used for studies!
―  ability to introduce other formats if / when required (HDF5)!

•  RoBDSIM analysis tool written in C++!
―  compiled C++!

•  Can use in 3 ways with exactly the same functionality!
―  C++ linked to, use interactively in ROOT, use in python!

•  RoBDSIM typically used in Python, ROOT and on farm!
•  Can add and produce histograms!
•  Suitable for farm analysis of job files!
•  https://bitbucket.org/jairhul/robdsim!

19

Statistical Comparison of Tracking!
•  Can calculate optical functions from particle distribution!
•  Another measure as compared to single particle tests!
•  Used to compare BDSIM with design of lattice!

―  useful for spotting conversion discrepancies!

•  Can compare with PTC!
•  Significant work on uncertainty calculation of optical functions from

particle distribution!

errorbars!

A. Abramov, S. Boogert!

20

Regression Testing!
•  Rapid development of BDSIM!
•  Occasionally, simple / basic things break!
•  Code too large to test all features yourself!
•  Automated build & testing system implemented!
•  Each example is also a test!
•  Reference histograms and results compared!
•  RoBDSIM executable used for comparison and testing!
•  145 tests so far!
•  Run nightly!

•  Hadronic & EM Shower development!
•  Tracking in each component!
•  Parser!
•  Geometry construction!
•  Geometry overlaps!
•  Many more….!

EM Shower in Collimator!

21

Python Utilities Galore!
•  pymadx, pybdsim, pymad8, robdsim, pytransport, pylhc!
•  pymadx!

―  loading and manipulation of TFS files!
―  range iterating, filtering, matching!
―  PTC segments supported!
―  use to plot a lattice above a graph – interactive too!!

•  pybdsim!
―  conversion from Madx, Mad8, Transport etc!
―  ASCII output analysis!
―  programmatic model construction!

•  pylhc!
―  utilities for parsing lhc model specific information!
―  collimation files, aperture information (filtering, matching etc)!

•  Again, all open source and distributed with BDSIM!

22

Documentation!
•  New manual (html & pdf) automatically updated weekly!

―  lots of syntax examples!
―  www.pp.rhul.ac.uk/bdsim/manual!

•  Detailed Doxygen code documentation similarly!
―  www.pp.rhul.ac.uk/bdsim/doxygen!

23

Public Git Access!
•  www.bitbucket.org/jairhul/bdsim!
•  Full open source development!
•  Issue tracking - (100 this year, 20 open)!

•  ~ 10 regular developers!
•  ~ 5 branches!

Many developers working !
at once without issue on !
many versions!
	

300 – 500 commits per version!
3 releases per year typically!
	

A successful git branching model!
	

24

Timeline!
•  Autumn 2015!

―  v0.9 released next week!
―  Finish magnet support & BLM geometry!
―  Implement magnet coils!
―  Implement magnet pole face rotation flexibility!
―  Implement Racetrack aperture!
―  Complete regression testing suite!
―  Support of crystal collimation processes & geometry!

•  V1.0 by end of 2015!
―  paper in preparation!

•  Spring 2016!
―  Factorise tracking!
―  Include external tracking library!
―  Consider incorporating collimation specific processes!

25

Summary!
•  BDSIM has great potential for a variety of applications!
•  Complimentary to existing codes!
•  Under rapid development – 7 regular developers!
•  Flexible and easy to explore new scenarios!
•  Weekly meetings & bi-annual code weeks!
•  Clear road map for development!
•  Paper in preparation!

26

Thank you!

www.pp.rhul.ac.uk/bdsim!
!

Acknowledgements:!
Regina, Stefano, !

Roderik, Andrea, Hector!

27

Reference Slide for URLs!
•  We’ve moved!!

•  www.bitbucket.org/stewartboogert/bdsim!
•  www.bitbucket.org/lnevay/pybdsim!

•  www.pp.rhul.ac.uk/bdsim!
•  www.pp.rhul.ac.uk/bdsim/manual!
•  www.pp.rhul.ac.uk/bdsim/doxygen!
•  www.bitbucket.org/jairhul/bdsim!
•  www.bitbucket.org/jairhul/pymadx!
•  www.bitbucket.org/jairhul/pybdsim!
•  http://abp-cdash.web.cern.ch/abp-cdash/index.php?project=BDSIM!

