
DYNK DUMP GIT Summary and conclusions

New features in SixTrack:
DYNK and DUMP

Kyrre Sjobak

High Luminosity LHC Week, October 30th 2015

Thanks to Alessio Mereghetti for original versions of DYNK and
DUMP, Riccardo De Maria and Andrea Santamaria for some of the
code development, and Roderik Bruce, Hector Garcia Morales and

Helmut Burkhardt for many useful discussions.

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 1 / 14

DYNK DUMP GIT Summary and conclusions

Outline

1 DYNK: DYNamic Kicks

2 DUMPing particle data

3 Source Distribution (GIT)

4 Summary and conclusions

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 2 / 14

DYNK DUMP GIT Summary and conclusions

What is DYNK

Extension of SixTrack [1]
Change element properties as a function of turn number
Fully controlled by new block in fort.3;
no need to change the sourcecode
Supported elements/attributes:

All thin magnets (type ±1 — ±10)
Average multipole strength

RF cavities (type ±12)
Voltage
Harmonic number
Phase

Crab cavities (type ±23)
Voltage
Frequency
Phase

Settings created using built-in
“mini-programming-language” [2]

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 3 / 14

DYNK DUMP GIT Summary and conclusions

What is DYNK

Extension of SixTrack [1]
Change element properties as a function of turn number
Fully controlled by new block in fort.3;
no need to change the sourcecode
Supported elements/attributes:

All thin magnets (type ±1 — ±10)
Average multipole strength

RF cavities (type ±12)
Voltage
Harmonic number
Phase

Crab cavities (type ±23)
Voltage
Frequency
Phase

Settings created using built-in
“mini-programming-language” [2]

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 3 / 14

DYNK DUMP GIT Summary and conclusions

What is DYNK

Extension of SixTrack [1]
Change element properties as a function of turn number
Fully controlled by new block in fort.3;
no need to change the sourcecode
Supported elements/attributes:

All thin magnets (type ±1 — ±10)
Average multipole strength

RF cavities (type ±12)
Voltage
Harmonic number
Phase

Crab cavities (type ±23)
Voltage
Frequency
Phase

Settings created using built-in
“mini-programming-language” [2]

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 3 / 14

DYNK DUMP GIT Summary and conclusions

DYNK block in fort.3

Example:
DYNK
/ t_pi = t*pi
FUN pi CONST 3.14
FUN t TURN
FUN t_pi MUL pi t
/ Load myfile.txt
FUN myfile FILE myfile.txt
/ Apply myfile to some magnet,
/ starting at turn 5
SET dmqx2af50l5+2 average_ms

myfile 5 -1 0
/ Apply t_pi to a crab voltage
SET crab4 voltage t_pi 1 -1 0
NEXT
Verbose but straight-forward syntax.

Statement types:
FUN
FUN name type arg1 arg2...

Define a function which can be
evaluated to provide a value for
the element attributes.

SET
SET element attribute
function first last shift

In the given time window, apply
a function to the given element
attributes.

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 4 / 14

DYNK DUMP GIT Summary and conclusions

DYNK example: RF Cavity detuning

RF frequency shift ⇒ shift
in revolution frequency ⇒
shift in beam momentum
and orbit
Used for measuring
off-momentum lossmaps [3]

V = V0 cos(ωt); Φ(t) ≡ ωt
dΦ

dt = ω ≡ ω0 + ∆ω(t)

⇒ Φ(t) = ω0t +

∫ t

0
∆ω(t ′) dt

⇒ V = V0 cos
(
ω0t +

∫ t

0
∆ω(t ′) dt

)
Phase shift accumulates

Linear frequency sweep:
∆ω(t) = a · t, (a is some constant)

∆Φ(t) =
∫ t

0 ∆ω(t) dt = aω·t2

2 .
Can be implemented directly:
– CODE –

Or using numerical integration:
– CODE –

For large changes, remember
wavelength: t = T∆t + z/c

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 5 / 14

DYNK DUMP GIT Summary and conclusions

DYNK example: RF Cavity detuning

RF frequency shift ⇒ shift
in revolution frequency ⇒
shift in beam momentum
and orbit
Used for measuring
off-momentum lossmaps [3]

V = V0 cos(ωt); Φ(t) ≡ ωt
dΦ

dt = ω ≡ ω0 + ∆ω(t)

⇒ Φ(t) = ω0t +

∫ t

0
∆ω(t ′) dt

⇒ V = V0 cos
(
ω0t +

∫ t

0
∆ω(t ′) dt

)
Phase shift accumulates

Linear frequency sweep:
∆ω(t) = a · t, (a is some constant)

∆Φ(t) =
∫ t

0 ∆ω(t) dt = aω·t2

2 .
Can be implemented directly:
– CODE –

Or using numerical integration:
– CODE –

For large changes, remember
wavelength: t = T∆t + z/c

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 5 / 14

DYNK DUMP GIT Summary and conclusions

DYNK example: RF Cavity detuning

RF frequency shift ⇒ shift
in revolution frequency ⇒
shift in beam momentum
and orbit
Used for measuring
off-momentum lossmaps [3]

V = V0 cos(ωt); Φ(t) ≡ ωt
dΦ

dt = ω ≡ ω0 + ∆ω(t)

⇒ Φ(t) = ω0t +

∫ t

0
∆ω(t ′) dt

⇒ V = V0 cos
(
ω0t +

∫ t

0
∆ω(t ′) dt

)
Phase shift accumulates

Linear frequency sweep:
∆ω(t) = a · t, (a is some constant)

∆Φ(t) =
∫ t

0 ∆ω(t) dt = aω·t2

2 .
Can be implemented directly:

fort.3
FUN phase quad a/2 0 0
SET acsca.d5l1.b1 lag_angle phase 1 -1 0

Or using numerical integration:
– CODE –

For large changes, remember
wavelength: t = T∆t + z/c

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 5 / 14

DYNK DUMP GIT Summary and conclusions

DYNK example: RF Cavity detuning

RF frequency shift ⇒ shift
in revolution frequency ⇒
shift in beam momentum
and orbit
Used for measuring
off-momentum lossmaps [3]

V = V0 cos(ωt); Φ(t) ≡ ωt
dΦ

dt = ω ≡ ω0 + ∆ω(t)

⇒ Φ(t) = ω0t +

∫ t

0
∆ω(t ′) dt

⇒ V = V0 cos
(
ω0t +

∫ t

0
∆ω(t ′) dt

)
Phase shift accumulates

Linear frequency sweep:
∆ω(t) = a · t, (a is some constant)

∆Φ(t) =
∫ t

0 ∆ω(t) dt = aω·t2

2 .
Can be implemented directly:
– CODE –

Or using numerical integration:
fort.3
FUN deltaFreq LIN a 0
//Convert the frequencies from MHz to radians/turn/Hz
FUN HzInvTurnFactor CONST 5.587288765e-4
FUN deltaPhi MUL deltaFreq HzInvTurnFactor
// Phi_turn = deltaW + Phi_turn-1
FUN phi_c2a IIR 1 IIRcoeffs.txt deltaPhi
//Set the phases
SET CRAB2A phase phi_c2a 1 -1 0

IIRcoeffs.txt
0 1 0 0 0
1 0 0 1 0

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 5 / 14

DYNK DUMP GIT Summary and conclusions

DYNK example: RF Cavity detuning

RF frequency shift ⇒ shift
in revolution frequency ⇒
shift in beam momentum
and orbit
Used for measuring
off-momentum lossmaps [3]

V = V0 cos(ωt); Φ(t) ≡ ωt
dΦ

dt = ω ≡ ω0 + ∆ω(t)

⇒ Φ(t) = ω0t +

∫ t

0
∆ω(t ′) dt

⇒ V = V0 cos
(
ω0t +

∫ t

0
∆ω(t ′) dt

)
Phase shift accumulates

Linear frequency sweep:
∆ω(t) = a · t, (a is some constant)

∆Φ(t) =
∫ t

0 ∆ω(t) dt = aω·t2

2 .
Can be implemented directly:
– CODE –

Or using numerical integration:
– CODE –

General: Replace
FUN deltaFreq ...
with any expression
Usable only for slowly
changing frequencies,
otherwise too inaccurate

For large changes, remember
wavelength: t = T∆t + z/c

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 5 / 14

DYNK DUMP GIT Summary and conclusions

Output file dynksets.dat

The settings of every element/attribute pair
affected by DYNK is for all turns written to a file
Useful for debugging your “program”
Or making plots for presentations etc.. . .
Can be turned off with flag NOFILE
Format:
turn element attribute SETidx funname value
Example program for parsing/plotting:
https://github.com/kyrsjo/SixtrackTools/blob/master/analysis/analyze_dynksets.py

Example dynksets.dat (reduced):

turn element attribute SETidx funname value
1 CRAB2A phase -1 N/A 0.000000000E+00
1 CRAB2A voltage 5 off 0.000000000E+00
2 CRAB2A voltage 9 on_2a 0.242183208E+01
6 CRAB2A phase 13 quenchPhase 0.000000000E+00
6 CRAB2A voltage 17 v_c2v 0.242183208E+01
7 CRAB2A phase 13 quenchPhase -0.822175200E+00
7 CRAB2A phase 13 quenchPhase -0.822175200E+00

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 6 / 14

https://github.com/kyrsjo/SixtrackTools/blob/master/analysis/analyze_dynksets.py

DYNK DUMP GIT Summary and conclusions

Output file dynksets.dat

The settings of every element/attribute pair
affected by DYNK is for all turns written to a file
Useful for debugging your “program”
Or making plots for presentations etc.. . .
Can be turned off with flag NOFILE
Format:
turn element attribute SETidx funname value
Example program for parsing/plotting:
https://github.com/kyrsjo/SixtrackTools/blob/master/analysis/analyze_dynksets.py

Example dynksets.dat (reduced):

turn element attribute SETidx funname value
1 CRAB2A phase -1 N/A 0.000000000E+00
1 CRAB2A voltage 5 off 0.000000000E+00
2 CRAB2A voltage 9 on_2a 0.242183208E+01
6 CRAB2A phase 13 quenchPhase 0.000000000E+00
6 CRAB2A voltage 17 v_c2v 0.242183208E+01
7 CRAB2A phase 13 quenchPhase -0.822175200E+00
7 CRAB2A phase 13 quenchPhase -0.822175200E+00

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 6 / 14

https://github.com/kyrsjo/SixtrackTools/blob/master/analysis/analyze_dynksets.py

DYNK DUMP GIT Summary and conclusions

Output file dynksets.dat

The settings of every element/attribute pair
affected by DYNK is for all turns written to a file
Useful for debugging your “program”
Or making plots for presentations etc.. . .
Can be turned off with flag NOFILE
Format:
turn element attribute SETidx funname value
Example program for parsing/plotting:
https://github.com/kyrsjo/SixtrackTools/blob/master/analysis/analyze_dynksets.py

Example dynksets.dat (reduced):

turn element attribute SETidx funname value
1 CRAB2A phase -1 N/A 0.000000000E+00
1 CRAB2A voltage 5 off 0.000000000E+00
2 CRAB2A voltage 9 on_2a 0.242183208E+01
6 CRAB2A phase 13 quenchPhase 0.000000000E+00
6 CRAB2A voltage 17 v_c2v 0.242183208E+01
7 CRAB2A phase 13 quenchPhase -0.822175200E+00
7 CRAB2A phase 13 quenchPhase -0.822175200E+00

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 6 / 14

https://github.com/kyrsjo/SixtrackTools/blob/master/analysis/analyze_dynksets.py

DYNK DUMP GIT Summary and conclusions

Output file dynksets.dat

The settings of every element/attribute pair
affected by DYNK is for all turns written to a file
Useful for debugging your “program”
Or making plots for presentations etc.. . .
Can be turned off with flag NOFILE
Format:
turn element attribute SETidx funname value
Example program for parsing/plotting:
https://github.com/kyrsjo/SixtrackTools/blob/master/analysis/analyze_dynksets.py

Example dynksets.dat (reduced):

turn element attribute SETidx funname value
1 CRAB2A phase -1 N/A 0.000000000E+00
1 CRAB2A voltage 5 off 0.000000000E+00
2 CRAB2A voltage 9 on_2a 0.242183208E+01
6 CRAB2A phase 13 quenchPhase 0.000000000E+00
6 CRAB2A voltage 17 v_c2v 0.242183208E+01
7 CRAB2A phase 13 quenchPhase -0.822175200E+00
7 CRAB2A phase 13 quenchPhase -0.822175200E+00

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 6 / 14

https://github.com/kyrsjo/SixtrackTools/blob/master/analysis/analyze_dynksets.py

DYNK DUMP GIT Summary and conclusions

DYNK example: Magnet ripple

Apply a sinusiodal ripple on top of the magnet strength:

y(t) = A cos
(2π(t − 1)

period + φ

)
Old input block RIPP can be converted directly
(and automatically):

RIPPLE OF POWER SUPPLIES
dmqx1f50l5+2 3.2315D-10 224.9
NEXT

DYNK
NOFILE
FUN RIPP-dmqx1f50l5+2 COSF_RIPP 3.2315D-10 224.9 0.0
SET dmqx1f50l5+2 average_ms RIPP-dmqx1f50l5+2 1 -1 0
NEXT

Perfectly reproduces results from the old block
Typically used for long dynamic apperture studies
⇒ use NOFILE flag

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 7 / 14

DYNK DUMP GIT Summary and conclusions

DUMPing particle data

Extract the beam population at (a)
given element(s)
Controlled by a block in fort.3

Syntax:
elementName frequency unitNum
formatIdx (filename)

Element name should be a single
element not in a BLOC

Example:
DUMP
ip1 1 660 2 IP1_DUMP.dat
NEXT

Extra options:
FRONT
HIGH
Element name = ALL

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 8 / 14

DYNK DUMP GIT Summary and conclusions

DUMPing particle data

Extract the beam population at (a)
given element(s)
Controlled by a block in fort.3

Syntax:
elementName frequency unitNum
formatIdx (filename)

Element name should be a single
element not in a BLOC

Example:
DUMP
ip1 1 660 2 IP1_DUMP.dat
NEXT

Extra options:
FRONT
HIGH
Element name = ALL

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 8 / 14

DYNK DUMP GIT Summary and conclusions

DUMPing particle data

Extract the beam population at (a)
given element(s)
Controlled by a block in fort.3

Syntax:
elementName frequency unitNum
formatIdx (filename)

Element name should be a single
element not in a BLOC

Example:
DUMP
ip1 1 660 2 IP1_DUMP.dat
NEXT

Extra options:
FRONT
HIGH
Element name = ALL

IP1_DUMP.dat:
DUMP format #2, bez=ip1 , dump period= 1
ID turn s[m] x[mm] xp[mrad] y[mm] yp[mrad]
z[mm] dE/E ktrack
1 1 0.00000 1.201547790E-02 -7.793418012E-02
-1.784574172E-02 3.023749796E-01
-7.344122000E+01 7.428571429E-06 31
etc.

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 8 / 14

DYNK DUMP GIT Summary and conclusions

DUMPing particle data

Extract the beam population at (a)
given element(s)
Controlled by a block in fort.3

Syntax:
elementName frequency unitNum
formatIdx (filename)

Element name should be a single
element not in a BLOC

Example:
DUMP
ip1 1 660 2 IP1_DUMP.dat
NEXT

Extra options:
FRONT
HIGH
Element name = ALL

IP1_DUMP.dat:
DUMP format #2, bez=ip1 , dump period= 1
ID turn s[m] x[mm] xp[mrad] y[mm] yp[mrad]
z[mm] dE/E ktrack
1 1 0.00000 1.201547790E-02 -7.793418012E-02
-1.784574172E-02 3.023749796E-01
-7.344122000E+01 7.428571429E-06 31
etc.

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 8 / 14

DYNK DUMP GIT Summary and conclusions

Future: Unified output facilities

Problem: Current output mechanisms quite diverse / obscure
Proposal: Unify these into a common OUTPUT block,
based on ideas from the current DUMP and DYNK

Should handle both pre-run output and tracking output
Hooks for analysis blocks etc. to enable outputs
Remove one of the particle number restrictions. . .

Obstacle: No clear scheme for fortran file unit # allocation
Identify range of safe IDs, make allocation/manager function.
MadX has a similar mechanism.

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 9 / 14

DYNK DUMP GIT Summary and conclusions

Future: Unified output facilities

Problem: Current output mechanisms quite diverse / obscure
Proposal: Unify these into a common OUTPUT block,
based on ideas from the current DUMP and DYNK

Should handle both pre-run output and tracking output
Hooks for analysis blocks etc. to enable outputs
Remove one of the particle number restrictions. . .

Obstacle: No clear scheme for fortran file unit # allocation
Identify range of safe IDs, make allocation/manager function.
MadX has a similar mechanism.

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 9 / 14

DYNK DUMP GIT Summary and conclusions

Future: Unified output facilities

Problem: Current output mechanisms quite diverse / obscure
Proposal: Unify these into a common OUTPUT block,
based on ideas from the current DUMP and DYNK

Should handle both pre-run output and tracking output
Hooks for analysis blocks etc. to enable outputs
Remove one of the particle number restrictions. . .

Obstacle: No clear scheme for fortran file unit # allocation
Identify range of safe IDs, make allocation/manager function.
MadX has a similar mechanism.

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 9 / 14

DYNK DUMP GIT Summary and conclusions

Distribution of SixTrack via GIT

GIT has replaced SVN for version control
Much better support for parallel development,
merging branches is easy
The most widely used version control tool today
Distributed: All users have full copy of the history

Repository hosted on GitHub
https://github.com/SixTrack/SixTrack
Recomended by CERN for open projects [4]
Allows non-CERN collaborators
Makes development easier and more structured:
Issue tracker, pull requests. . .

Currently in very active development

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 10 / 14

https://github.com/SixTrack/SixTrack

DYNK DUMP GIT Summary and conclusions

Distribution of SixTrack via GIT

GIT has replaced SVN for version control
Much better support for parallel development,
merging branches is easy
The most widely used version control tool today
Distributed: All users have full copy of the history

Repository hosted on GitHub
https://github.com/SixTrack/SixTrack
Recomended by CERN for open projects [4]
Allows non-CERN collaborators
Makes development easier and more structured:
Issue tracker, pull requests. . .

Currently in very active development
Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 10 / 14

https://github.com/SixTrack/SixTrack

DYNK DUMP GIT Summary and conclusions

Summary and conclusions

DYNK
Mechanism for changing
element properties as a function
of time
Very useful for studying
fast failure scenarios
Replaces older RIPP mechanism
and multiple private hacks
Easy to extend to support new
function and/or element types

DUMP
Extracting the beam population
for analysis outside SixTrack
Might be the seed for
remodelling the output system

Source distribution / GIT
SixTrack is now distributed via
GitHub
Makes coordination much easier
Avoid “monster-commits”

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 11 / 14

DYNK DUMP GIT Summary and conclusions

Thanks!

(More) Questions?

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 12 / 14

DYNK DUMP GIT Summary and conclusions

Bibliography I

[1] K. Sjobak , H. Burkhardt, R. De Maria, A. Mereghetti, A.
Santamaría García: GENERAL FUNCTIONALITY FOR
TURN-DEPENDENT ELEMENT PROPERTIES IN
SIXTRACK ; IPAC’15.
[2] Kyrre Sjobak and Frank Schmidth: SixTrack User’s
reference manual, v2.5.28. https://github.com/SixTrack/
SixTrack/raw/master/Doc/user_manual/six.pdf

[3] Hetor Garcia Morales et al: LHC off-momentum
collimation simulation (work in progress); LHC Collimation
Working Group meeting #194, 21/9/2015. https://indico.
cern.ch/event/446488/other-view?view=standard

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 13 / 14

https://github.com/SixTrack/SixTrack/raw/master/Doc/user_manual/six.pdf
https://github.com/SixTrack/SixTrack/raw/master/Doc/user_manual/six.pdf
https://indico.cern.ch/event/446488/other-view?view=standard
https://indico.cern.ch/event/446488/other-view?view=standard

DYNK DUMP GIT Summary and conclusions

Bibliography II

[4] KB0003132: When is it appropriate to use CERN GitLab or
external services such as Github?
https://cern.service-now.com/service-portal/
article.do?n=KB0003132&s=gitlab

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 14 / 14

https://cern.service-now.com/service-portal/article.do?n=KB0003132&s=gitlab
https://cern.service-now.com/service-portal/article.do?n=KB0003132&s=gitlab

Implementation of DYNK Development model

Implementation – data structure
Data stored in common blocks defined in block comdynk

FUN statements stored in one table
1 row per FUN
Columns: Name (index in cexpr_dynk), function type, 3×free
Arrays available with “allocatable” memory,
storing integers, reals and strings

integer funcs_dynk (maxfuncs_dynk,5) !Main FUN table
integer iexpr_dynk (maxdata_dynk) !Free storage (integers)
double precision fexpr_dynk (maxdata_dynk) !Free storage (doubles)
character(maxstrlen_dynk) cexpr_dynk(maxdata_dynk)!Free storage (strings)

integer nfuncs_dynk, niexpr_dynk, nfexpr_dynk, ncexpr_dynk !Allocation

Two similar tables for SET statements
Columns: Function index, turn limits, turn shift
Columns: Element name, attribute name
Also store pre-tracking values

integer sets_dynk(maxsets_dynk, 4) ! SET table (ints)
character(maxstrlen_dynk) csets_dynk (maxsets_dynk,2) ! SET table (names)
integer nsets_dynk

character(maxstrlen_dynk) csets_unique_dynk (maxsets_dynk,2) ! Store the pre-tracking
double precision fsets_origvalue_dynk(maxsets_dynk) ! settings from fort.2

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 1 / 7

Implementation of DYNK Development model

Implementation – data structure
Data stored in common blocks defined in block comdynk

FUN statements stored in one table
1 row per FUN
Columns: Name (index in cexpr_dynk), function type, 3×free
Arrays available with “allocatable” memory,
storing integers, reals and strings

integer funcs_dynk (maxfuncs_dynk,5) !Main FUN table
integer iexpr_dynk (maxdata_dynk) !Free storage (integers)
double precision fexpr_dynk (maxdata_dynk) !Free storage (doubles)
character(maxstrlen_dynk) cexpr_dynk(maxdata_dynk)!Free storage (strings)

integer nfuncs_dynk, niexpr_dynk, nfexpr_dynk, ncexpr_dynk !Allocation

Two similar tables for SET statements
Columns: Function index, turn limits, turn shift
Columns: Element name, attribute name
Also store pre-tracking values

integer sets_dynk(maxsets_dynk, 4) ! SET table (ints)
character(maxstrlen_dynk) csets_dynk (maxsets_dynk,2) ! SET table (names)
integer nsets_dynk

character(maxstrlen_dynk) csets_unique_dynk (maxsets_dynk,2) ! Store the pre-tracking
double precision fsets_origvalue_dynk(maxsets_dynk) ! settings from fort.2

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 1 / 7

Implementation of DYNK Development model

Implementation – program flow (1/3)
Start of maincr

daten:
Parse input,
initialization

fort.3

dynk_parseFUN/SET

initialize_elements

Init in maincr:
RNG, kicks,

closed orbit, . . .

ithick trauthintrauthick Next
slide

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 2 / 7

Implementation of DYNK Development model

Implementation – program flow (1/3)
Start of maincr

daten:
Parse input,
initialization

fort.3

dynk_parseFUN/SET

initialize_elementsInit in maincr:
RNG, kicks,

closed orbit, . . .

ithick trauthintrauthick Next
slide

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 2 / 7

Implementation of DYNK Development model

Implementation – program flow (2/3)
trauthinPrev. slide

Init in trauthin
(ktrack etc.)

Type of
tracking

dynk_pretrack

thin6dua

thin4d

Initialize particles
(collimation)

thin6d

End

Lo
op

ov
er

pa
ss
es

initialize_elements

Next
slide

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 3 / 7

Implementation of DYNK Development model

Implementation – program flow (2/3)
trauthinPrev. slide

Init in trauthin
(ktrack etc.)

Type of
tracking

dynk_pretrack

thin6dua

thin4d

Initialize particles
(collimation)

thin6d

End

Lo
op

ov
er

pa
ss
es

initialize_elements

Next
slide

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 3 / 7

Implementation of DYNK Development model

Implementation – program flow (3/3)

thin6d

initialization

Apply kick

Return

Lo
op

ov
er

ele
m
en
ts

Lo
op

ov
er

tu
rn
s

dynk_apply

dynk_setvalue

dynk_computeFUN

initialize_element

dynk_getvalue

dynksets.dat

prev. slide

prev. slide

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 4 / 7

Implementation of DYNK Development model

Implementation – program flow (3/3)

thin6d

initialization

Apply kick

Return

Lo
op

ov
er

ele
m
en
ts

Lo
op

ov
er

tu
rn
s

dynk_apply

dynk_setvalue

dynk_computeFUN

initialize_element

dynk_getvalue

dynksets.dat

prev. slide

prev. slide

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 4 / 7

Implementation of DYNK Development model

Implementation – Adding new FUNs

In principle
Allocate a function index
Add code to the functions
dynk_computeFUN and
dynk_parseFUN

Code example – evaluation:
recursive double precision function
& dynk_computeFUN(funNum, turn) result(retval)
...
select case (funcs_dynk(funNum,2))
...
case(32)
retval = sin(dynk_computeFUN(
& funcs_dynk(funNum,3),turn))
...
end select
end function

Code example – initialization:
FUN SIN <function name>
subroutine dynk_parseFUN(getfields_fields,
& getfields_lfields,getfields_nfields)
...
select case (getfields_fields(3)
& (1:getfields_lfields(3)))
...
case("SIN")a

! DATA: Name, Type, function index, -, -
funcs_dynk(nfuncs_dynk,1) = ncexpr_dynk
funcs_dynk(nfuncs_dynk,2) = 32
funcs_dynk(nfuncs_dynk,3) =
& dynk_findFUNindex(getfields_fields(4)
& (1:getfields_lfields(4)), 1)

! NAME
cexpr_dynk(ncexpr_dynk)(1:getfields_lfields(2))
& = getfields_fields(2)(1:getfields_lfields(2))
...
end select
end subroutine

aSome boilerplate code,
incl. input sanity checks, is omitted

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 5 / 7

Implementation of DYNK Development model

Implementation – Adding new FUNs

In principle
Allocate a function index
Add code to the functions
dynk_computeFUN and
dynk_parseFUN

Code example – evaluation:
recursive double precision function
& dynk_computeFUN(funNum, turn) result(retval)
...
select case (funcs_dynk(funNum,2))
...
case(32)
retval = sin(dynk_computeFUN(
& funcs_dynk(funNum,3),turn))
...
end select
end function

Code example – initialization:
FUN SIN <function name>
subroutine dynk_parseFUN(getfields_fields,
& getfields_lfields,getfields_nfields)
...
select case (getfields_fields(3)
& (1:getfields_lfields(3)))
...
case("SIN")a

! DATA: Name, Type, function index, -, -
funcs_dynk(nfuncs_dynk,1) = ncexpr_dynk
funcs_dynk(nfuncs_dynk,2) = 32
funcs_dynk(nfuncs_dynk,3) =
& dynk_findFUNindex(getfields_fields(4)
& (1:getfields_lfields(4)), 1)

! NAME
cexpr_dynk(ncexpr_dynk)(1:getfields_lfields(2))
& = getfields_fields(2)(1:getfields_lfields(2))
...
end select
end subroutine

aSome boilerplate code,
incl. input sanity checks, is omitted

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 5 / 7

Implementation of DYNK Development model

Implementation – Adding new elements / attributes

Add the element to dynk_setvalue and dynk_getvalue

If the element uses data from other variables than
ed, ek and el for kicking:
Add code to initialize_element
Sometimes ugly interactions occur. . .

Initialization spread thin throughout the code
Other elements depending (indirectly) on this setting

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 6 / 7

Implementation of DYNK Development model

Our development model
Master repository:
https://github.com/SixTrack/SixTrack

Contains the released versions in its master branch.
Repository maintained by Ricardo and Kyrre.

Personal repositories:

To add a new feature, create a fork on GitHub.
In the newly created personal repository,
create a branch.
Do your changes in this branch,
while your master tracks the upstream master.
To get the changes from upstream into your branch,
merge upstream’s master into your branch
To merge your code into upstream (for a new
release), create a pull request on GitHub.

Upstream

m
as
te
r

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 7 / 7

https://github.com/SixTrack/SixTrack

Implementation of DYNK Development model

Our development model
Master repository:
https://github.com/SixTrack/SixTrack

Contains the released versions in its master branch.
Repository maintained by Ricardo and Kyrre.

Personal repositories:

To add a new feature, create a fork on GitHub.
In the newly created personal repository,
create a branch.
Do your changes in this branch,
while your master tracks the upstream master.
To get the changes from upstream into your branch,
merge upstream’s master into your branch
To merge your code into upstream (for a new
release), create a pull request on GitHub.

Upstream

m
as
te
r

Private

m
as
te
r

copy
Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 7 / 7

https://github.com/SixTrack/SixTrack

Implementation of DYNK Development model

Our development model
Master repository:
https://github.com/SixTrack/SixTrack

Contains the released versions in its master branch.
Repository maintained by Ricardo and Kyrre.

Personal repositories:

To add a new feature, create a fork on GitHub.
In the newly created personal repository,
create a branch.
Do your changes in this branch,
while your master tracks the upstream master.
To get the changes from upstream into your branch,
merge upstream’s master into your branch
To merge your code into upstream (for a new
release), create a pull request on GitHub.

Upstream

m
as
te
r

Private

m
as
te
r,f
ea
tu
re

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 7 / 7

https://github.com/SixTrack/SixTrack

Implementation of DYNK Development model

Our development model
Master repository:
https://github.com/SixTrack/SixTrack

Contains the released versions in its master branch.
Repository maintained by Ricardo and Kyrre.

Personal repositories:

To add a new feature, create a fork on GitHub.
In the newly created personal repository,
create a branch.
Do your changes in this branch,
while your master tracks the upstream master.
To get the changes from upstream into your branch,
merge upstream’s master into your branch
To merge your code into upstream (for a new
release), create a pull request on GitHub.

Upstream Private

m
as
te
r

copy

m
as
te
r

fe
at
ur
e

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 7 / 7

https://github.com/SixTrack/SixTrack

Implementation of DYNK Development model

Our development model
Master repository:
https://github.com/SixTrack/SixTrack

Contains the released versions in its master branch.
Repository maintained by Ricardo and Kyrre.

Personal repositories:

To add a new feature, create a fork on GitHub.
In the newly created personal repository,
create a branch.
Do your changes in this branch,
while your master tracks the upstream master.
To get the changes from upstream into your branch,
merge upstream’s master into your branch
To merge your code into upstream (for a new
release), create a pull request on GitHub.

Upstream Private

m
as
te
r

m
as
te
r

fe
at
ur
e

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 7 / 7

https://github.com/SixTrack/SixTrack

Implementation of DYNK Development model

Our development model
Master repository:
https://github.com/SixTrack/SixTrack

Contains the released versions in its master branch.
Repository maintained by Ricardo and Kyrre.

Personal repositories:

To add a new feature, create a fork on GitHub.
In the newly created personal repository,
create a branch.
Do your changes in this branch,
while your master tracks the upstream master.
To get the changes from upstream into your branch,
merge upstream’s master into your branch
To merge your code into upstream (for a new
release), create a pull request on GitHub.

Upstream Private

m
as
te
r

m
as
te
r

fe
at
ur
e

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 7 / 7

https://github.com/SixTrack/SixTrack

Implementation of DYNK Development model

Our development model
Master repository:
https://github.com/SixTrack/SixTrack

Contains the released versions in its master branch.
Repository maintained by Ricardo and Kyrre.

Personal repositories:

To add a new feature, create a fork on GitHub.
In the newly created personal repository,
create a branch.
Do your changes in this branch,
while your master tracks the upstream master.
To get the changes from upstream into your branch,
merge upstream’s master into your branch
To merge your code into upstream (for a new
release), create a pull request on GitHub.

Upstream Private

master

m
as
te
r

fe
at
ur
e

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 7 / 7

https://github.com/SixTrack/SixTrack

Implementation of DYNK Development model

Our development model
Master repository:
https://github.com/SixTrack/SixTrack

Contains the released versions in its master branch.
Repository maintained by Ricardo and Kyrre.

Personal repositories:

To add a new feature, create a fork on GitHub.
In the newly created personal repository,
create a branch.
Do your changes in this branch,
while your master tracks the upstream master.
To get the changes from upstream into your branch,
merge upstream’s master into your branch
To merge your code into upstream (for a new
release), create a pull request on GitHub.

Upstream Private

master master

fe
at
ur
e

copy

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 7 / 7

https://github.com/SixTrack/SixTrack

Implementation of DYNK Development model

Our development model
Master repository:
https://github.com/SixTrack/SixTrack

Contains the released versions in its master branch.
Repository maintained by Ricardo and Kyrre.

Personal repositories:

To add a new feature, create a fork on GitHub.
In the newly created personal repository,
create a branch.
Do your changes in this branch,
while your master tracks the upstream master.
To get the changes from upstream into your branch,
merge upstream’s master into your branch
To merge your code into upstream (for a new
release), create a pull request on GitHub.

Upstream Private

master master

Kyrre Sjobak New features in SixTrack: DYNK and DUMP HLLHC week 2015 7 / 7

https://github.com/SixTrack/SixTrack

	DYNK: DYNamic Kicks
	DUMPing particle data
	Source Distribution (GIT)
	Summary and conclusions
	Appendix
	Implementation of DYNK
	Development model

