

SC15 report

Andrei Gheata

SFT group meeting, November 23, 2015

Venue

- 28-th edition, SC is a HPC conference held yearly in US
 - Among the biggest HPC conferences
- Austin, TX, 15-20 Nov 2015
 - Austin Convention Center
 - Participants: 10000+ people, 352 exhibitors (industry/ research)
- SC16: Salt Lake City, UT 13-18 Nov 2016

Program (or how to get HPCintoxicated...)

- Technical program
 - Plenary/invited talks
 - Technical papers/posters
 - Tutorials
 - Panels (get the word from the guru's)
 - Workshops
 - Scientific Visualization Showcase
 - Birds of a Feather (audience driven discussions)
 - Awards

Exhibits

 Latest technologies and discoveries from industry and research

Students@SC

- Cluster competition, student volunteers & experiencing HPC 4 undergraduates
- Mentor-Protégé Program, Student-Postdoc Job Opportunities

Keynote talks

- HPC Matters plenary session given by Diane Bryant
 - Intel datacenter business unit leader, speaking on the importance and directions of HPC
 - Simulation driven science -> Data model driven science
 - Data analytics/machine learning
 - "technology goes 5nm..." evolution or revolution?
 - Exascale limited by: power efficiency/ cost per performance/accesibility to all
 - https://youtu.be/kuh5qzZl2HM

Several invited talks on many subjects

Alan Alda – an inspiring intro

- Actor, writer, science advocate, and Visiting Professor at Stony Brook University
 - Shared his passion for science communication and its importance
- Analogy with 3 phases of love
 - Attraction: body language and tone of voice prevail on words
 - Infatuation: think about all time, memory is helped by emotion
 - "put a little word of emotion..."
 - Commitment: listen to each other, empathy
- "Curse of knowledge" others may not know what you know...
 - Try to improvise, tell a (dramatic) story!
 - Do not explain jargon with more jargon
 - Try to explain to an 11 years old

M*A*S*H (1972-1983)

Intel MTA: the Knights Landing

- 2nd generation Phi
 - Bootable processor
 - PCIe & Omni-Path versions later
 - 3+ TF, 3x KNC single thread performance
 - 16 GB MCDRAM@450 GB/s + 90 GB DDRAM → high BW workflows
- Chip on tiles design
 - 36 tiles (2 cores) 2D mesh interconnect
 - Dynamic partition of resources to threads
 - 1 thread can saturate
- 32 vector reg, & 8 mask reg.
 - Gather/scatter
- Monitor/Mwait instruction
 - Set HW points/resume rather than spin

4 thr/core, fast unaligned access, gather/scatter support, max 2 instr/cycle

KNL Overview

TILE 2 VPU CHA 2 VPU 1MB Core L2 Core

MCDRAM	Chip: 36 Tiles interconnected by 2D Mesh
11	Tile: 2 Cores + 2 VPU/core + 1 MB L2
3	Memory: MCDRAM: 16 GB on-package; High BW DDR4: 6 channels @ 2400 up to 384 GB
	Node: 1-Socket only
	Fabric: Intel [®] Omni-Path Architecture on-package (not shown)
2	Vector Peak Perf: 3+TF DP and 6+TF SP Flops ~5X Higher BW
	Scalar Perf: ~3x over Knights Corner than DDR
ŝ	Streams Triad (GB/s): MCDRAM : 400+; DDR: 90+
MCDRAM .	Source Intel: All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without noice. KNL data are preliminary based on current expectations and are subject of change without noice. Binary Compatible with Intel Xeon processors using Hassell Interfucion Set (except TSX). 2Bandwidth numbers are based on STREAM like memory access pattern when MCDRAM used as full memory. Results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or Software design or configuration may affect actual performance. "Other names and brands may be claimed as the property of others.

- AVX-512 extensions
 - Conflict Detection (vect. portions of loop)
 - Prefetch instructions (gather/scatter)
 - Exponential and reciprocal

KNL – caching & locality

Several memory modes selectable at boot

- Cache mode: MCDRAM is a cache of DDR
 - to avoid if many cache misses
- Flat mode: MCDRAM (node 0) & DDRAM (node 1) sharing the address space
 - High bandwidth guaranteed, but SW has to manage NUMA allocations & copy
- Hybrid mode: 4-8 GB MCDRAM cache mode, 4-8 shared
- KNL mesh interconnect
 - Passing cache lines across tiles, via distributed directories, to memory
 - All-to-All no affinity largest latency
 - Quadrant affinity directory-memory (transparent to SW)
 - SNC (Sub-NUMA-Clustering) ⇔ quad core Xeon

MCDRAM exposed as a separate NUMA node

Cluster Mode: All-to-All

Intel MTA: 3D XPOINT – NVM solutions

- NVM express protocol interface PCIe <-> SSD
 - Ready for Intel's Optane brand of NVM
 - **1000x faster** than flash
- 2 trends (2016/2017)
 - 3D NAND 48/32 GB block architecture
 - □ 3D Xpoint with ~0 cost IOPS
 - 10x density of RAM
 - □ 500K writes (4K blocks)
 - <10 us latency at 99%, <60 us at 99.999% quality of service

- New paradigm in cluster computing
 - Hot gets hotter
- ColdStream 3D Xpoint SSD's
 - Up to 3TB
 - 550K IOPS R/W
 - 10 us latency
 - 2500 MB/s read/write rate
 - Active/idle power: 18W/3W
 - "Wicked" fast can saturate the RAM
- Elkdale dual port NVRAM D3X00 Q1 2016
- Coldstream Dual Port Q1 2017
 - □ 375 GB-> 1.5 TB
- □ Intel SSD DC P4500 -> "Cliffdale" ->8TB

Intel MTA: Apache Pass DIMM

- Server memory architecture based on 3D XPoint tech.
 - Plugs on standard DDR4
 - New class of memory
 - □ 1-RAM, 2-DISK, **3-AppDirect**
- "Jumbo" memory
 - Virtualization, big data and cloud in memory DB
- Memory resilience
 - Persistence to power cycles
- Hyper-speed storage
 - Use all IOPS you can get

- Performance gap SSD <-> RAM still huge, filled by 3D Xpoint
 - ApachePass+Coldstream
 - 6TB memory (3TB/CPU), behaving like memory (volatile)
 - One can carve out and emulate the disk in this space
- AppDirect mode partition modes (memory/disk) on the fly
 - Carve out piece and give it to the app
 - AES256 encryption

Workshops, posters, papers

- 22 full day, 20 half day workshops, targeting subjects and communities in scientific/software communities
 - Sunday, Monday and Friday (minimize overlap with exhibits)
 - Both ad-hoc on specific (submitted) subjects or regular workshops
 - High probability to find an interesting subject
 - Not archived in the proceedings as of SC13
- ~140 posters on high performance computing, storage, networking and analysis
 - Archived digitally and made available after the conference
 - ACM Student Research Competition posters
 - Awards for posters
- ~85 papers, written BEFORE the conference and made available on a CD

Awards – an example

- "How to teach exascale machine to do the data dance"
 - Ken Kenedy award Katherine Yelick (LBNL) DOE program coordinator
- Exascale = order of magnitude increase in performance at all scales, not just exaflop
- Image analysis, data extraction in "streaming" datasets
 - Palomar transient factory (systematic exploration of the dynamic sky), biology (Gene Context Analysis)
- Random access analytics genome assembly
 - Random access in big memory -> huge hash tables, needing low overhead communication
- Data productivity
 - Spark 100x faster than Hadoop MapReduce in memory, 10x on disk
 - Cloud computing

Exascale: NEC SX-ACE

- SX-ACE = new generation NEC Vector Supercomputer
 - Designed for memory bandwidth intensive applications
 - □ SX2/3 (1983) -> SX8 -> SX-ACE
 - □ 64 GFlops core, 3GB/s/Watt
- AURORA project best bandwith/\$
 - Several societal projects in AURORA vision to use SX-ACE
 - Tsunami real-time simulation system
 - 20 min response time from earthquake rupture for detailed flooding simulation
 - Detailed imaging in the government office
 - Probes detecting the seismic wave, feeding simulation engine

Panels

Many HPC subjects

- "Post Moore's law computing: Digital versus Neuromorphic versus Quantum"
- "Future of Memory Technology for Exascale and Beyond"
- "Supercomputing and Big Data: From Collision to Convergence"
- "Programming Models for Parallel Architectures and Requirements for Pre-Exascale"
- Asynchronous Many--Task Programming Models for Next Generation Platforms
- ...
- Some lead to interesting technical discussions
- Many diverged into endless philosophical discussions (or dissertations on personal views on HPC)
- Many questions but not necessary as many answers...

Panels

Summary

- Science is increasingly driven by data (large and small)
- Analyzing large data requires a different approach
- We need new instruments: "microscopes & telescopes" for data
- Changing sociology due to data
- Similar problems present in HPC data
- Challenges for simulations different from unstructured data
- On Exascale everything becomes a Big Data problem
- We need to think about not how to store but how to analyze our data
- A new, Fourth Paradigm of Science is emerging...

Exhibitions – the show-off

Anything from gadgets to exascale computing solutions

Networking, memory, storage

Labs, universities, computing centers

Hands-on, invited talks on booths, posters

Published as ISO/IEC TS 19570:2015, July 2015.

Draft available online http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf

We've proposed adding this to C++17 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html

Software, compilers

MATLAB Speaks Scalability

My impressions

- More than a conference, a big gathering mixing scientific computing and technology
 - "Super" goes well with the name, has everything may cross your mind
 - One has to target what he/she is going for, cannot cover it all
 - Big show with exhibits, everybody trying hard to make a scientific/ technical showcase
 - Important occasion for discussing business with partners/providers
- Data analytics (big data, machine learning, ...) getting most focus
 - Technology is what allowed this to happen
 - High-throughput computing pushed from every side: memory BW and low latency, high density storage more FLOPS/Watt, faster fabric interconnects
 - More and more HW features becoming SW programmable
 - Does not make our life easier...
- There's something for everyone