## The CLIC Decelerator

Beam dynamics studies and test-facilites

**CLIC Workshop** 

October 13, 2009

Erik Adli, Department of Physics, University of Oslo

- Introduction to the decelerator
- How do we work?
- Challenge: PETS wake
- · Challenge: misalignment
- Compontent specifications
- Test facilities
- Conclusions

# The decelerator



## The decelerator

#### **Objective of the drive beam decelerator:**

- Produce rf power for accelerating structures, timely and uniformly along the decelerator. Robust performance of 42 km beam line.
- Achieving a high energy extraction efficiency, to ensure good machine wall-plug efficiency: baseline is 90% energy extraction maximum
- Beam must be transported to the end with very small losses
- Drive Beam: 101 A, 2.4 GeV



1500 x 48 power extraction and transfer structures (PETS) will convert kinetic energy to rf power along 1 km decelerator sectors.

→ novel beam dynamic challenges for the decelerator
No analogue studies for the ILC – CLIC works from scratch

- Introduction to the decelerator
- How do we work?
- Challenge: PETS wake
- · Challenge: misalignment
- Compontent specifications
- Test facilities
- Conclusions

# PETS rf design

- PETS designed with a fundamental mode 135 MW, 12 GHz rf power production from a 101 A drive beam
- The related transverse wakes will deflect the drive beam
- The transverse dipole spectrum are calculated by GdfidL timedomain simulations, and a set of discrete modes is fitted and implemented in the tracking code PLACET:



Estimate of PETS transverse dipole impedance (2007)

- a small number of modes (here nine) give a good fit of the calculated impedance
- PLACET represents a mode with amplitude, frequency, Q-factor and group velocity

See previous slides, "Progress in the PETS development", I. Syratchev, Monday 17:00

### PLACET model of the drive beam



#### **Example PLACET bunch train (transverse)**



PLACET energy profile of beam at the end of the decelerator

Sliced bunches, where wakes are generated from each slice, – both multi-bunch and single-bunch wakes effects incorporated. Both effects important for studies of beam envelope growth.

Beam loading automatically taken care of, as well as single-bunch energy spread due to bunch length.

The baseline simulations reflect the fact that leading particles will be **10 times more energetic** than the most decelerated at the end of the decelerator.

#### Decelerator beam transport

Uniform power production implies that the beam must be transported to the end with very small losses (< 1 % level). We require robust transport of the entire beam through the  $\sim 1$  km decelerator sectors.

**PLACET simulations** are the main tool for the decelerator studies.







Simulation criterion:  $3\sigma$  of *all* beam slices <  $\frac{1}{2}$  aperture (5.8 mm)

Beam transport along lattice, for ideal injection into a perfect machine: minimum envelope ~ 3 mm

- Introduction to the decelerator
- How do we work?
- Challenge: PETS wake
- · Challenge: misalignment
- Compontent specifications
- Test facilities
- Conclusions

#### Effect of transverse wakes

Dipole wake: induces transverse force proportional offset of leading charge. Effect for ideal two-particle: linear growth.



#### **Decelerator beam particularities:**

- long bunches yields potentially severe single-bunch effect
- large energy spread decoheres wakes
- **PETS design** must not only minimize wakes, avoid resonant frequencies, but also ensure sufficient energy spread





Amplification of action at decelerator end, due to transverse wakes for PETS with higher (left) / lower (right) group velocity

#### PETS baseline

Reaching a satisfactory PETS

design, with sufficient mitigation
of the transverse wakes, has
been a challenging process; must
be robust with respect to
misalignment, injection errors
and jitter at all frequencies





Simulation studies show that the

PETS baseline design yields
acceptable performance [but, to
be confirmed by experiments].

See previous slides, "Progress in the PETS development", I. Syratchev, Monday 17:00

- Introduction to the decelerator
- How do we work?
- Challenge: PETS wake
- Challenge: misalignment
- Compontent specifications
- Test facilities
- Conclusions

### Effect of machine misalignment

Second challenge is the effect of machine misalignment. In particular: **kicks from misaligned quadrupoles** will drive beam envelope far out of vacuum chamber, even for very tight pre-alignment of 20 um.

Again, 90% energy spread of decelerator beam poses a challenge:



Beam transport for ideal injection into a misaligned machine

Beam transport for ideal inj. into a 1-to-1 corrected machine

### Dispersion-free steering

We improve the situation by imposing that particles of different energy shall all follow the BPM center trajectory – i.e. minimizing the energy dependence of the trajectories.

We propose a scheme based on drive beam **bunch-manipulation** and exploiting **PETS beam loading**, to generate a test-beam:

| See EA and D. Schu

See EA and D. Schulte, "Beam-Based Alignment for the CLIC Decelerator", EPAC'08 normal beam bunch train test-beam bunch train 2.5 E [GeV] y [mm] -0.151.5 2.5 3.5 200 600 800 1000 t [ns] s [m]

Energy profile of main beam and example test-beam Beam transport for ideal inj. into a dispersion-free steered machine

- Introduction to the decelerator
- How do we work?
- Challenge: PETS wake
- · Challenge: misalignment
- Compontent specifications
- Test facilities
- Conclusions

## Ultimate goal of beam dynamics studies: pin-point component specification

#### Lattice component specifications are driven by wake mitigation and correction strategies

Need tight focusing for sufficient wake mitigation.

- Baseline: one quadrupole per meter ( $<\beta>=1.25$  m) Need sufficent component alignment precision for initial correction.
- Baseline: BPM and quadrupole **alignment of 20 um**Need sufficient BPM precision for dispersion-free steering performance
- Baseline: BPM precision of 2 um



# Specifications

| Tolerance                                                | Value    | Comment                                                                     |
|----------------------------------------------------------|----------|-----------------------------------------------------------------------------|
| PETS offset                                              | 100 μm   | r <sub>c</sub> < 1 mm fulfilled                                             |
| PETS angles                                              | ~ 1 mrad | r <sub>c</sub> < 1 mm fulfilled                                             |
| Quad angles                                              | ~ 1 mrad | r <sub>c</sub> < 1 mm fulfilled                                             |
| Quad offset                                              | 20 μm    | Must be small to be able to transport alignment beam                        |
| BPM accuracy (incl. static misalignment and elec. error) | 20 μm    | Must be small to be able to perform initial correction                      |
| BPM precision (diff. measurement)                        | ~ 2 μm   | Allows efficient suppression envelope growth due to dispersive trajectories |

#### Static tolerances

| Tolerance                     | Value               | Comment                                                      |
|-------------------------------|---------------------|--------------------------------------------------------------|
| Quadrupole position jitter    | 1 μm                | r/r <sub>0</sub> < 5 %                                       |
| Quadrupole field ripple       | 1· 10 <sup>-3</sup> | r/r <sub>0</sub> < 5 %                                       |
| Current jitter                | < 1%                | Stability req. only – RF power constraints might be tighter. |
| Beta mismatch, $d\beta/\beta$ | ~10 %               | r/r <sub>0</sub> < 5 %                                       |

Dynamic tolerances

Beam envelopes for decelerator baseline, 1-to-1 correction, and dispersion-free steering

- Introduction to the decelerator
- How do we work?
- Challenge: PETS wake
- · Challenge: misalignment
- Compontent specifications
- Test facilities
- · Conclusions

#### Decelerator test-facilities



#### Two-beam Test Stand

#### TBTS: the primary test-bed for single PETS performance





Particular interest for the decelerator studies: verification of transverse wake:

- measurement of **beam deflection**, TBTS kick angle measurement precision of 10 urad (expected kick; few 10 urad/mm centroid offset (5 A) ) - first benchmarking of **PETS** code
- direct measurement of transverse wake with rf antennas



See talk "Status and progress of the Two-beam Test Stand", R. Ruber, today 14:35



#### Test Beam Line

Test Beam Line: Transport of the 28 A CTF3 Drive Beam, while extracting more than 50% of the energy using 16 PETS, each producing CLIC level rf power, with small loss level.



## Test Beam Line: experiments



- Precision correlation of 1) expected energy extraction (from intensity and bunch form), 2) rf power measurement and 3) dump energy measurements. Precision correlations (aiming for  $\sim 5\%$ ) will show
  - that we **fully understand** and can **operate** the drive beam rf power generation
  - that neither wakes nor energy spread impede transport (loss monitoring)
  - performance tests of first series of 12 GHz PETS and couplers
- Test of the proposed decelerator orbit correction-schemes, using bunch manipulation and exploitation of the beam loading



- Potential verification of resonant wake build-up (might require resonant kickers/BPMs)
- Benchmarking of drive beam / PETS part of the PLACET code



#### CTF3 linac: Dispersion-free steering

As a test-case Dispersion-Free Steering was applied to the CTF3 fully loaded linac:





Test-case with large simulated BPM offsets was defined :

6 DFS 4 2 2 4 4 6 6 8 10 12 14 BPM girder # [-]

**CTF3 linac structures** 



- Steering close to real center trajectory instead of (artifically) offset BPM centers
- in practice: DFS indicate where problems are located
- Disperison reduced by a factor 3 with respect to 1-to-1

EA et al., "Status of an Automatic Beam Steering for the CLIC Test Facility 3", *Proceedings of Linac'08* 

- Introduction to the decelerator
- How do we work?
- Challenge: PETS wake
- · Challenge: misalignment
- Compontent specifications
- Test facilities
- Conclusions

#### Conclusions

Decelerator: **novel beam dynamics challenges** due to the 90% energy extraction

42 km of beam line as the rf power source: must ensure robust beam transport

Simulation **studies show satisfactory performance** for the decelerator, following from

- sufficient mitigation of PETS wakes
- dispersion-free correction scheme
- tight, but feasible, component tolerances

What remains: **experiment tests** of beam transport with large energy extraction

Post-TBL: see talk by R. Corsini "The R&D programme beyond the CDR" later today

For an introduction to the CLIC decelerator: see EA, "A Study of the Beam Physics in the CLIC Decelerator", Ph.D. thesis, University of Oslo, available November 2009

Thank you for your attention