"PROGRESS on QD0 QUADRUPOLE"

Michele Modena - CERN

... Studies (new) for a CLIC FF conceptual design has started in **June 2009** within the scope of the newly created "Machine Detector Interface "(MDI) Working Group

"Nominal" Requirements for CLIC FF Quad: (from Specifications by D. Schulte, R. Tomas, and from discussions with L. Gatignon, D. Swoboda et al. at the "MDI WG Monday Meetings":

- Gradient: highest possible towards a nominal value of: 575 T/m)
- Required Length: 2.73 m (but the real FF Quad will be cut in different longitudinal sections...)
- Magnet Bore Radius: 3.8 mm + 0.3mm estimated for a vacuum chamber thickness (as proposed with TE Vacuum Group) + 0.025(tolerance) = 4.125mm
- **Field Quality:** a 1st specification exist, but needs and requirements to be further discussed with CLIC Beam Physic Group
- Geometric (layout) boundary conditions:

Major one is: presence of the "spent beam pipe": conical shape (10 mrad aperture), min. distance from the FF (at the front end for a L* = 3.5 m): 35 mm

- Other boundary conditions like:
 - Anti-solenoid presence
 - Stabilization requirements
 - Detector design and its interfaces

Were recently put also on the table for discussion.

As CERN "Magnet Group" we propose to go on ASAP with the construction of a **1**st **short prototype.** We see several advantages in this.

A FF quadrupole prototype (short model!) will be useful for:

- for CLIC: To check the feasibility of a possible FF design approach.
- for CERN: To let CERN-TE/MSC starting activities in PM magnet domain and more specifically:
 - Validation of a possible FF cross-section design
 - To **investigate the difficulties** for the high precision machining of the Permendur poles, the PM wedges, achievable tolerances, etc.
 - To investigates the role of **tolerances** between poles and PM wedges in terms of Gradient and Field Quality
 - Eventually, to tests different PM materials
- for CERN/CLIC: Provide a magnet with a minimum bore aperture to develop and test miniaturized magnetic measurement systems.

— ...

"Halbach type" approach:

(Opera 2D simulation. Courtesy A. Vorozhtsov)

"Halbach type" approach: achievable gradients

"Halbach type" approach: Field quality

Gradient azimuthal homogeneity at R=1mm

for SmCo₅ Br=0.86T

UNITS
Length m
Flux density T
Field strength : A m¹
Potential Wb r
Conductivity S m¹
Source density: A m²
Power W
Force N
Energy J
Mass kg

PROBLEM DATA
C:\ASV\CLIC\CLIC\U
n Beam Magnets\fina
cousing magnetReS'
VE Magnet\PM magn
PM_Halbach_V6.op2
Quadratic elements
XY symmetry
Vector potential
Magnetic fields
Static solution
Scale factor = 1.0
15127 elements
30620 nodes
6 regions

"Halbach type" approach: Field quality

Gradient azimuthal homogeneity at R=1mm

 $Sm_2Co_{17}Br=1.12T$

(Opera 2D simulation. Courtesy A. Vorozhtsov)

"Halbach" vs. "Super Strong" performances:

	R=3.8 [mm] (no chamber)		R=4.125 [mm]		
Material	Sm ₂ Co ₁₇	Nd ₂ Fe ₁₄ B	Sm ₂ Co ₁₇	Nd ₂ Fe ₁₄ B	
Grad [T/m] "Halbach"	450	593	409	540	
Grad [T/m] "Super Strong"	564	678	512	615	

(Courtesy A. Vorozhtsov)

"Pure Electro-Magnetic" approach

(NI = 5000 A)

- -"8 shape" quad design: (it permits to accommodate the spent beam pipe)
- Saturation appears (with both materials)

(Opera 2D simulation. Courtesy A. Vorozhtsov)

"Hybrid" approach, Version 1:

-Presence of PM wedges reduce strongly saturation in the poles → Grad increase of a factor 1.5-1.68

							44444					
00.0										*****		
80.0												
n]				*****								
9										******		
70.0												
70.0												
										*********	******	
			ذ م م م م ۲۰۰۰						*****	1111100000		
00.0			*******	****								
60.0				***			-0-0-0-0-0	-				
										11111000		
		💉			00000	4000	-			20000000000000000000000000000000000000		
F0.0		, , ,		*****	سموموم	(1 - 1) - (1) - (1) - (1)	-01-01-01-01-01-0	i -ni -ni -ni -ni -ni -ni -	ો નારે નારે નારે નારે નારે નારે નારે નાર નારે નુ	- 6 6 6 6 6 6 6 6 6		
50.0				PPPPPP	2222					72777777		
		11/2/21	******	PPPPPP	PPR					ARAGRAFIA		
		7777		PPPPPP	1					4 4 4 4 4 4 4 4 4 4		
				00000								
40.0			******	A P P P								
		******	*******	PPP								
		*****	*****	41111						1 1 1 1 1 1 1 1 1 1 1	4 4 4 4 4 4 4	
		000000	1000000								4 1 1 1 1 4 1	
30.0	1111272222											
			PARKET.							1 4 4 4 4 4 4 4 4 4	* * * * * * * * * * * * * * * * * * * *	
		******	opposite.									
	,,,,,,,,,,,,,	******										
20.0		2000000										
	11100000000	correct										
	· · · · · · · · · · · · · · · · · · ·											
10.0	DDDDDDDD											
1	Repose											
	JAN 18											
7	68611111											
0.8	101111111	***										
		30.0	40.0 50	.0 60.0	70.0	80.0	90.0	100.0	120.0	140.0	160.0	180.0
(-vector: B) ရက္ကျစ္စရရွများ မြန	r r											X [mm]

	lw=5000 [A]
Grad [T/m] Sm ₂ Co ₁₇	550
Grad [T/m] Nd ₂ Fe ₁₄ B	615

"Hybrid" approach, Version 2:

	lw=5000 [A]
Grad [T/m] Sm ₂ Co ₁₇	531
Grad [T/m] Nd ₂ Fe ₁₄ B	599

- The presence of the "ring" decrease slightly the Gradient (by 15-20 T/m) but will assure a more precise and stiff assembly
- EM Coils design will permit wide operation conditions (with or without water cooling) that can be critical for performances (ex. stabilization)

"Hybrid" approach, Version 2: Field quality

Gradient azimuthal homogeneity at R=1mm

Resuming:

PM magnets (NOT Tunable)	R=4.125 [mm]		
Material	Sm ₂ Co ₁₇	Nd ₂ Fe ₁₄ B	
Grad [T/m] "Halbach"	409	540	
Grad [T/m] "SuperStrong"	512	615	

NC magnets Iw=5000 A (Tunable)	R=4.125 [mm]			
Material	ST1010	Permendur		
Grad [T/m]	310	366		

Hybrid magnet Iw=5000 A (Tunable)	R=4.125 [mm]			
PM Material	Sm ₂ Co ₁₇	Nd ₂ Fe ₁₄ B		
Yoke Material	ST1010 and Permendur			
Grad [T/m] Version 1	550	615		
Grad [T/m] Version2 (SOLID CENTRAL RING)	531	599		

⁻ For our application Sm_2Co_{17} choice could be preferable (Curie temp. higher, higher radiation resistance)

"Hybrid Short Prototype" (Version 2):

Conductor ID (ex. from "LUVATA" Catalogue)	6822
height/width [mm]	15.4/10
hole diameter [mm]	4.0
x/y [mm]	5.70/3.00
R [mm]	1.50
N turns per pole	12
Conductor Length [m] per pole for 1m magnet	28.5
Minimal bending radius [mm]	20
Insulation thickness [mm]	0.5
Mass per m	1.25 kg/m

(Drawing: courtesy E. Solodko)

"Hybrid Short Prototype":

"Hybrid Short Prototype":

...could be something like this.

Length will be short (it depends by PM wedges length availability), probably between 100 and 200 mm.

STATUS:

- -2D and 3D magnetic design mainly completed.
- -Simulations about mech. tolerances impact on gradient and field quality ongoing
- -Field quality requirements: to be further discussed with Beam Physic Group
- -Mechanical checks (simulation) should be done in the next weeks
- -Contacts with potential manufacturers and components suppliers started.

... Towards a more "adapted" design (... still as CONCEPTUAL design!):

- 1) Reduce the current density in the coil (and consequently the coil cross-section) **to be free from cooling water** (at least in turbulent regime). The proposed cross section must have $J \le 1.5 \text{ A/mm2}$.
- 1) Anyway, the presence of a "cooling circuit" is expected for a "thermalization" more than for a real coil cooling. This will also depends by the design of the support beam.
- 1) The presence of some "thermalization plates" will also provide **higher rigidity to the coil assembly** (remind that the coils could be quite long in the final magnet(s)
 since 2.73 m of total length for the QD0 element(s) are required).

... Towards a more "adapted" design (...still in CONCEPTUAL phase!):

