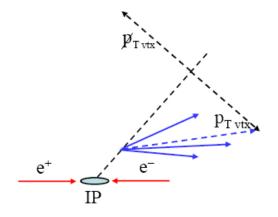
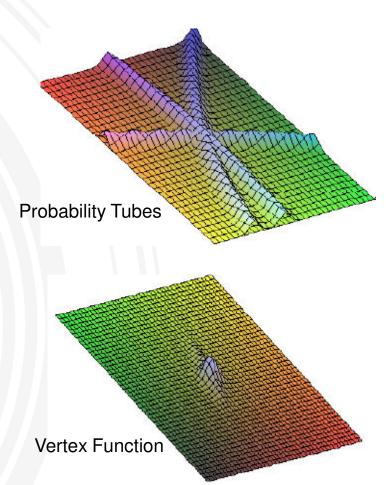


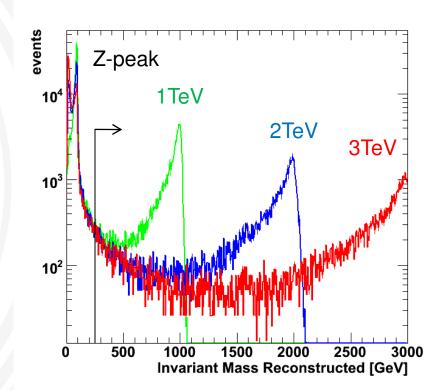
Jet Flavour Tagging for TeV Jets


Tomáš Laštovička, University of Oxford CLIC09,15/10/2009 @ CERN

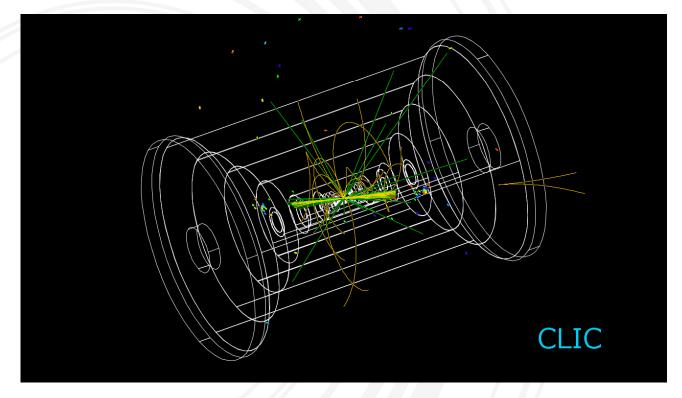

Overview

- LCFI Package
- Monte Carlo Samples
- Jet Tag Performance and Comparisons
- Neural Net Inputs and Optimisation
- Current and Future Work
- Summary

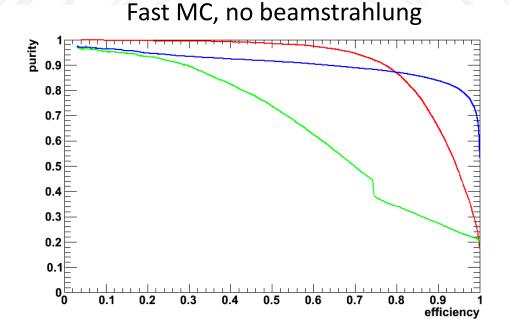
LCFI Package


- Used for jet flavour tagging and secondary vertex reconstruction.
- Topological vertex finder ZVRES.
- Standard LCIO input/output
 - Marlin environment (used for both ILD/SiD)
- Flavour tagging based on Neural Nets.
 - Combine several variables (more details later)

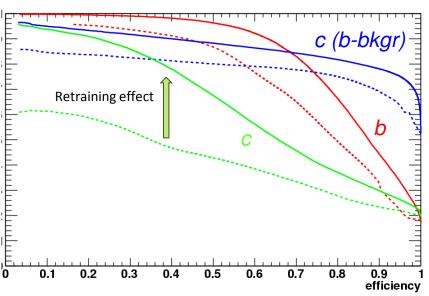
Monte Carlo Samples I


- Generated with CalcHEP 2.5.j
 - 500GeV, 1TeV, 2TeV, 3TeV center of mass energy
 - di-jets (e⁺e⁻ → qqbar) with ISR, no beamstrahlung
- Decayed and fragmented with Pythia 6.4.10
- 50k events for b,c and {u,d,s}
 - event weights are accounted for
- s-channel events frequently intensively "boosted" along z-axis due to high energy ISR
 - radiative return to the Z-peak
 - ~80% of s-channel b-events
 - cut on invariant mass (>250GeV)

Monte Carlo Samples II

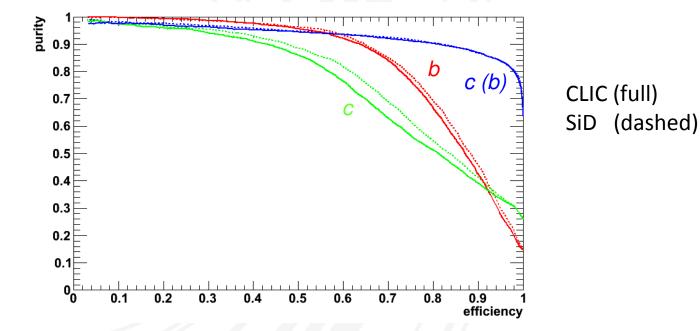

- Events passed to FastMC using both SiD (sid02) and CLIC (clic01_sid) geometries.
- LCFI package run locally in Oxford (2x4x3x50k = 1.2M events in about 2 days)

3TeV bB-event vtx+tracker

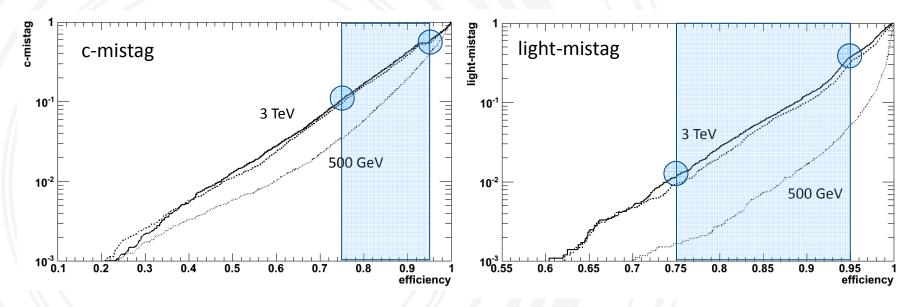


500GeV SiD

- A comparison to the previous (LoI) SiD result which was done with full digitisation/simulation, PFA and beamstrahlung effects.
 - Neural Nets need to be retrained (see dashed (default NNs) vs full line)
 - b-tag slightly better while c-tag is slightly worse, generally reasonable agreement.

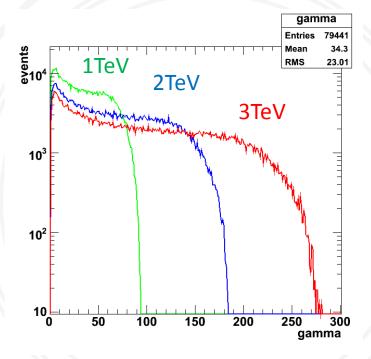


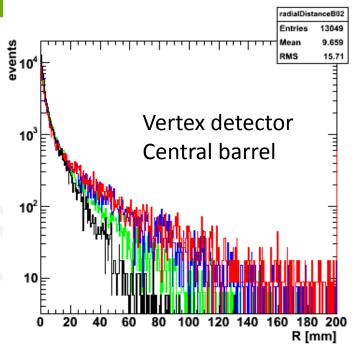
SiD LoI, full sim/dig/rec

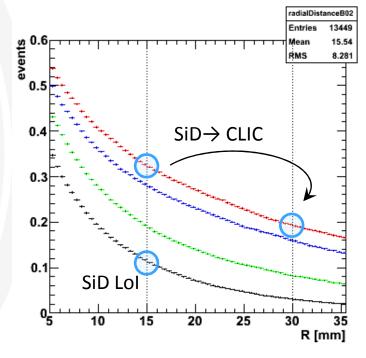

3TeV SiD vs. CLIC Geometry

- Purity vs. efficiency is perhaps not the best plot to look at, it involves cross sections and various acceptance effects.
- Comparison of SiD and CLIC geometry at 3 TeV (Z-peak removed)
 - SiD geometry slightly over-performs CLIC geometry due to better resolution (especially where light quarks are involved) – keep in mind that this is FastMC
 - At 3TeV more b-quarks decay after 15mm (1st SiD vtx layer) needs full sim/rec to study.

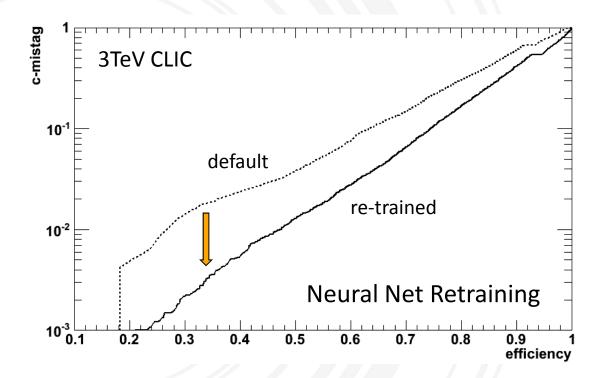
Mistag Efficiency vs. B-tag Efficiency I


- Mistag efficiency vs. tag efficiency are less affected by cross sections/acceptance effects.
- B-tag NN example
 - This net was trained to separate b jets from both light and c-jets, not against c-jets only


B-Tag efficiency region discussed yesterday by Marco for H⁰A⁰ Mistag rate runs from 10% (1%) to huge 60% (40%) for c (light) jets!


Decay Vertices of B-mesons

- B-mesons are significantly more boosted at 3TeV.
 - And decay further from the interaction point.
 - In the central region, about 33% of B0s decay after 15mm (1st SiD layer) and 20% after 30mm @ 3TeV.

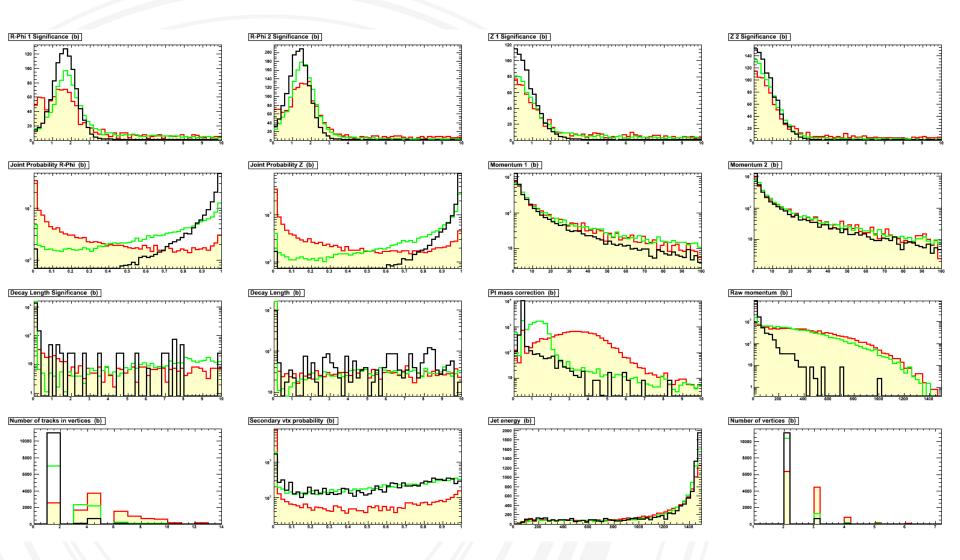


LCFI Package Optimisation I

- LCFI package optimisation for 3TeV case is important
 - Neural Net re-training absolutely essential
 - Package parameters to be tuned and (very likely) new ideas needed
 - Forward regions to be studied more carefully

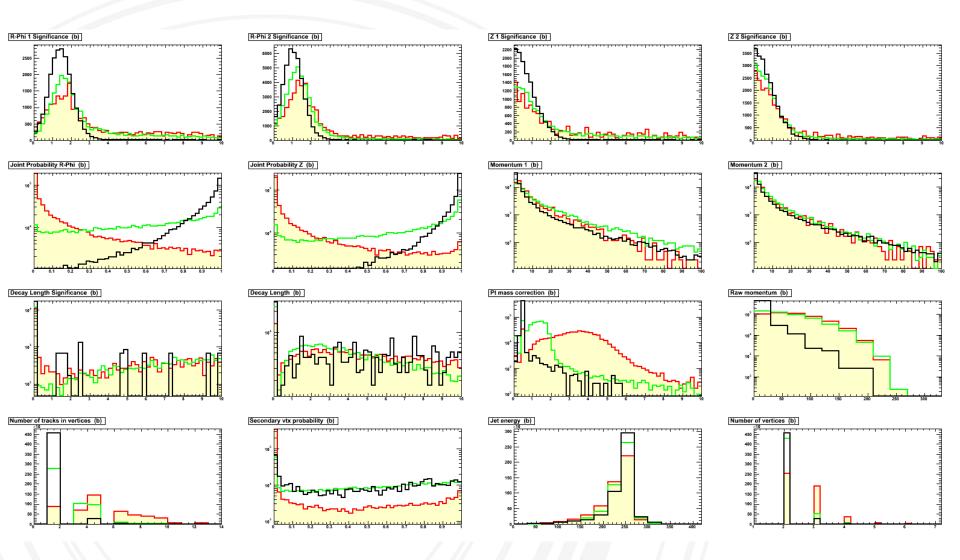
LCFI Package Optimisation II

- Optimisation is not only a matter of Neural Net retraining. The package has plenty of parameters:
 - Track selection params
 - ZVRES params
 - Flavour Tag params
 - Vertex Charge params


ZVRES		flavour tag		vertex charge	
parameter	value	parameter	value	parameter	value
$w_{ m IP}$	1	N_L	5	$T_{\rm qb,max} \ ({\rm mm})$	1
k	0.125	$p_{\rm trk,NL,min}$ (GeV)	1	$(L/D)_{\rm qb,max}$	2.5
R_0	0.6	$p_{\text{trk,NL-1,min}}(\text{GeV})$	2	$(L/D)_{ m qb,min}$	0.18
$\chi^2_{ m TRIM}$	10	$N_{ m trks,min}$	1	$T_{\rm qc,max} \ ({\rm mm})$	1
χ_0^2	10	$\chi^2_{ m norm,max}$	20	$(L/D)_{\rm qc,max}$	2.5
		$T_{\rm max}~({ m mm})$	1	$(L/D)_{\rm qc,min}$	0.5
		$(L/D)_{\text{max}}$	2.5		
		$(L/D)_{\min}$	0.18		
		$N_{\sigma,\max}$	2		
		$w_{ m PT,max}$	3		
		$w_{\rm corr,max}$	2		
		$(b/\sigma_b)_{\mathrm{cut}}$	200		

Track Selection Parameters							
Parameter		IP Fit	Vertexing	Flavour Tagging			
$\chi^2/$ ndf of track fit		5	4	-			
$R - \phi$ impact parameter d_0 (mm)		20	2	20			
z impact parameter z_0 (mm)		20	5	20			
d_0 uncertainty (mm)	<	-	0.007	-			
z_0 uncertainty (mm)	<	-	0.025	-			
$\operatorname{track} p_T (\operatorname{GeV})$	>	0.1	0.2	0.1			

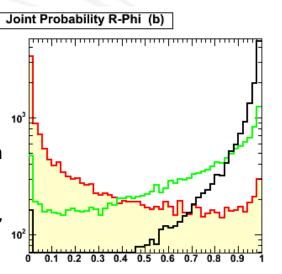
Neural Net Inputs

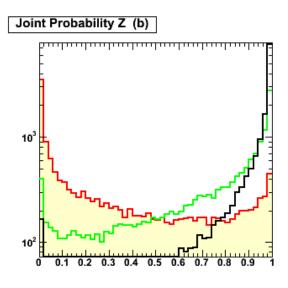

- LCFI package classifies jets in one of three Neural Nets based on #vtx
 - 1 vertex (only IP vertex), 8 Inputs
 - R-Phi and Z significance of 2 leading tracks and their momenta
 - Joint R-Phi and Z Probability
 - 2 vertices
 - Decay Length and its significance
 - Pt mass correction
 - Raw momentum
 - Number of tracks in vertices
 - Secondary vtx probability
 - Joint R-Phi and Z Probability
 - 3+ vertices, NN Inputs just as for the 2 vertices but separate NN.

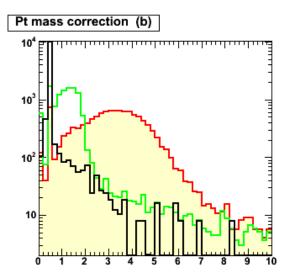
Neural Net Inputs 3TeV – CLIC Geometry

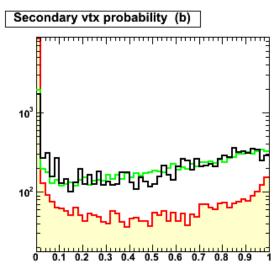
Page ■ 13

Neural Net Inputs 500GeV - SiD




Page ■ 14


Selected Neural Net Inputs


Most relevant NN inputs are

- joint probabilities in both R-Phi and Z coordinates
- Pt mass corrections for cases with secondary vertices.
- Also secondary vertex probability, raw vertex momentum etc.

Current Work

- Neural Net training automatised
 - FANN package used instead of default LCFI NN package
 - Much faster and better training algorithms.
 - No need for GRID, can be quickly run on a laptop.
 - Options to go for 3x3 neural nets (LCFI default)
 - Or simply 3 nets, 1 per tag (SiD Lol preffered)
- XML writer written for FANN
 - To write out NNs in LCFI NN xml format
 - Not tested yet.
- FANN setup can be used for physics analyses (and it was for SiD LoI).

Future Work

LCFI Package Optimisation

- First draft version of parameter+nets based on FastMC
- Full Sim/Rec studies required

Forward tagging

- "Neglected" for 500GeV ILC where tagging based on central events.
- Important for 3TeV physics.

Physics

- Test the tagging performance with all backgrounds, PFA, ...
- Examples: H⁰A⁰, vvH, vvH⁰H⁰, Higgs branching ratios, bB, tT, ...
 - Don't forget about c-tagging: for 120GeV SM Higgs BR is ~3% vs ~70% for bB
- Essential for tagging evaluation!

Summary

We have analysed FastMC so far: experience from LoI tells us that the full simulation and reconstruction is essential as well as full inclusion of beam backgrounds.

At this stage, 3TeV CLIC b- and c- tagging requires future work, LCFI package can't be used in its 500GeV version.

The package must be optimised for 3TeV CLIC and its neural nets retrained.

Physics analyses will provide a real benchmark of the tagging performance in a more realistic environment.

Challenge