

### Polarimetry at the CLIC Sources

İİİ.

Sabine Riemann (DESY), LEPOL Group

14 October 2009, CLIC09



- Sources (CLIC and ILC)
- e+ polarimetry at low energies (LEPOL)
  - Compton transmission polarimeter
  - Bhabha polarimeter studies
  - Compton polarimetry after DR
- Spin rotation, fast helicity reversal

Low Energy POLarimeter Group:

DESY/HUB: R. Dollan, T. Lohse, S. Riemann, A. Schälicke, P.Schuler, A. Ushakov Minsk: P. Starovoitov, Tel Aviv U: G. Alexander

Outline



CLIC 09 workshop

## ILC Electron Source System



### Spin rotation:

- before damping ring: rotate spin to the vertical (alternative: rotation at 1.7 GeV, Moffeit et al., ILC-NOTE-2008-040)
- after damping ring: rotate spin to the desired polarization (e.g. longitudinal polarization) at the IP,

Fast helicity reversal done with laser





### Mott polarimeters to measure e- polarization near the gun at ILC and CLIC

e-polarimeter

- Mott polarimetry requires transverse polarization of positrons → spin rotation
- Mott at SLAC: (Clenendin et al.)

 The CTS (Cathode Test System) Mott is a compact lowenergy (20 kV) retarding-field polarimeter located in the Cathode Test Lab

 The GTL (Gun Test Lab) Mott is a medium-energy (120 kV) multiple-foil polarimeter located in the GTL

IIL

## ILC positron source (RDR)



Helical undulator → Average positron polarization ~30% Polarimeter:

- Optimization of e+ polarization and e+ intensity at the source
- Control of polarization transport



#### **Conditions:**

- Large beam size
- Energy (ILC): ≥125 MeV

#### **Requirements for the method:**

- Suitable for low energy range
- Suitable for <u>large</u> positron beam size
- Suitable for intense beam
- Fast, non-destructive
- Accuracy O(few %)

#### **Laser Compton Scattering**

- High intensity Laser on low emittance beam
- High precision
- Only after Damping Rings

#### Bhabha/Møller scattering

- Thin magnetized target
- Suitable for desired energy range

#### **Compton Transmission**

- Beam absorbed in thick target
- energy ~few tens MeV

#### Mott scattering

 Transverse polarized positrons

## Polarimetry at the e+ source



Considered options for the ILC:

- Compton transmission (125 MeV)
- Bhabha polarimeter (400 MeV)
- Compton after DR (beamsize!) (5 GeV

Simulations using Geant4 with polarized processes



### Compton transmission polarimeter







Polarimetry at the CLIC sources



### Application of Compton transmission polarimetry at ILC

• E<sub>e+</sub> = 125 MeV



### **Disadvantages:**

- At 125MeV Compton process is suppressed
- Method is destructive
   → only few bunches/pulse



Polarimetry at the CLIC sources

CT polarimetry at ILC

- Reconversion target heating power deposition in target (W, 2X₀) and iron absorber → only few bunches (1 bunch) for polarization measurement
  - $\rightarrow$  fast kicker needed

|          | Positron beam energy | material      | thickness           | $E_{dep}$ per e <sup>+</sup> |
|----------|----------------------|---------------|---------------------|------------------------------|
|          | [MeV]                |               | $[X_0 / \text{mm}]$ | $[MeV/1e^+]$                 |
| Target   | 35                   | W             | 2.0 / 7.0           | 22.4                         |
| Absorber |                      | ${\rm Fe}$    | $26.7 \ / \ 150$    | 6.9                          |
| Target   | 125                  | W             | 2.0 / 7.0           | 38.1                         |
| Absorber |                      | $\mathrm{Fe}$ | $26.7 \ / \ 150$    | 61.6                         |



### Precision:

Intense ILC beam  $\rightarrow$  sufficient statistics,

precision <10% after few pulses

## → Compton transmission polarimetry is possible, but not the preferred solution







### **Bhabha Polarimeter**



### **Bhabha Polarimetry**



Cross section:

ΪĻ

$$\frac{d\sigma}{d\Omega} = r_0^2 \frac{\left(1 + \cos\theta\right)^2}{16\gamma^2 \sin^4\theta} \left[ \left(9 + 6\cos^2\theta + \cos^4\theta\right) - \frac{P_{e^+}}{P_{e^+}} P_{e^-} \left(7 - 6\cos^2\theta - \cos^4\theta\right) \right]$$

- e+ and e- must be polarized
- maximal asymmetry at  $90^{\circ}(CMS) \sim 7/9 \approx 78 \%$



Example:  $P_{e+} = 80\%$ ,  $P_{e-} = 7\%$ 

 $A_{max} \sim 4.4 \%$ 





Selection of scattered electrons and positrons:

- 0.05 < θ < 0.09rad (mask)
- 100MeV < E < 300 MeV (spectrometer)
- Reverse polarization in target foil
- $\rightarrow$  Asymmetry ~ P(e+)





### Bhabha target heating





Magnetization of iron foil
 depending on temperature
 → Only small reduction of P<sub>Fe</sub>

Emittance growth (ILC): 1.3% (σ=1.0cm) 5.2% (σ=0.5cm)

#### time dependence



IIL











• Target heating at CLIC less than at ILC (assuming beam sizes as at ILC)

|                          | SLC                      | CLIC                  | ILC                    | LHeC                  |
|--------------------------|--------------------------|-----------------------|------------------------|-----------------------|
| e⁺/ bunch                | 3.5 × 10 <sup>10</sup>   | 0.64×10 <sup>10</sup> | 2 × 10 <sup>10</sup>   | 1.5×10 <sup>10</sup>  |
| Bunches /<br>macropulse  | 1                        | 312                   | 2625                   | 20833                 |
| Macropulse<br>Rep. Rate. | 120                      | 50                    | 5                      | 10                    |
| e⁺ / second              | 0.042 × 10 <sup>14</sup> | 1 × 10 <sup>14</sup>  | 2.6 × 10 <sup>14</sup> | 31 × 10 <sup>14</sup> |

## Bhabha polarimetry at CLIC, 200 MeV, is possible

IL

## Compton Polarimetry after DR

Compton polarimetry is only efficient for small beam sizes  $\rightarrow$  after DR

- Considerations for 5 GeV
  - see G. Alexander, P. Starovoitov, LC-M-2007-014
  - Fast measurement for  $\sim \pi$  crossing angle between e and  $\gamma$
  - Combination with laser wire?
    - e beam size larger than laser beam waist  $\rightarrow$  not a good solution
    - in principle, π/2 crossing angle between e and γ ⇔ possible, but larger statistical error, Δ(π/2) ≈ 15•Δ(π)
       → poode more time
      - $\rightarrow$  needs more time
  - Transverse polarization after DR !?
    - Luminosity and cross section are the same as for longitudinal polarization
    - Very small asymmetry ~ 1-2%
    - Detector has to resolve the  $\phi$  dependence of asymmetry



#### Scheme suggested by K. Moffeit et al., SLAC-TN-05-045



 $e^+$  spin rotation + helicity flip at 400MeV

Proposal: K. Moffeit, M. Woods, Walz, ILC-NOTE-2008-040 → spin rotation and fast helicity reversal at ~400 MeV



#### Bhabha polarimeter has to be passed before spin rotation



- Polarimetry at e- source: Mott
- Polarimetry at e+ source:
  - Undulator based e+ source is polarized
  - Low energy e+ polarimetry:
    - Compton transmission  $\rightarrow$  very few bunches
      - E ≈ 125 MeV for ILC
      - ?? for CLIC
    - Bhabha (~400 MeV at ILC, 200 MeV for CLIC)
    - Compton after DR (5 GeV ILC),
      - Where is it needed ?
      - Longitudinal polarization recommend, transverse possible but more complicated due to lower asymmetry

Summary

- Details of e+ polarimeter design will depend on LC design
- Fast helicity flip to match the experimental precision for physics is also useful for polarization measurement at the e+ source (control of syst. effects) but studied options require longitudinally polarized positrons
- Tools for design/performance studies: G4 with polarization
- So far, there is no low energy e+ polarimeter in the ILC design

IIL



# Backup

15 Oct 2009, CLIC09

ilc

• •

Polarimetry at the CLIC sources





| Center-of-mass energy              | CLIC 500 GeV  |               | CLIC 3 TeV         |     |              |
|------------------------------------|---------------|---------------|--------------------|-----|--------------|
| Beam parameters                    | Conservative  | Nominal       | Conservative       |     | Nominal      |
| Accelerating structure             | 502 G         |               |                    |     |              |
| Total (Peak 1%) luminosity         | 0.9(0.6)·1034 | 2.3(1.4)·1034 | 1.5(0.73)·1<br>034 | 5   | .9(2.0)·1034 |
| Repetition rate (Hz)               | 50            |               |                    |     |              |
| Loaded accel. gradient (MV/m)      | 80            |               | 100                |     |              |
| Main linac RF frequency (GHz)      | 12            |               |                    |     |              |
| Bunch charge (109)                 | 6.8           |               | 3.72               |     |              |
| Bunch separation (ns)              | 0.5           |               |                    |     |              |
| Beam pulse duration (ns)           | 177           |               | 156                |     |              |
| Beam power/beam (MW)               | 4.9           |               | 14                 |     |              |
| Hor./vert. norm. emitt (10-6/10-9) | 3/40          | 2.4/25        | 2.4/20             |     | 0.66/20      |
| Hor/Vert FF focusing (mm)          | 10/0.4        | 8 / 0.1       | 8 / 0.3            |     | 4 / 0.07     |
| Hor./vert. IP beam size (nm)       | 248 / 5.7     | 202 / 2.3     | 83 / 2.0           |     | 40 / 1.0     |
| Hadronic events/crossing at IP     | 0.07          | 0.19          | 0.57               |     | 2.7          |
| Coherent pairs at IP               | 10            | 100           | 5 107              |     | 3.8 108      |
| BDS length (km)                    | 1.87          |               | 2.75               |     |              |
| Total site length km               | 13.0          |               | 48.3               |     |              |
| Wall plug to beam transfer eff     | 7.5%          |               | 6.8%               |     |              |
| • Total power consumption (MW)     | 129.4         |               |                    | 415 |              |

15 Oct 2009, CLIC09

## Baseline Spin Rotation System



Dipole and solenoid strength are set by spin manipulation requirements Dipole:  $7.9312^{\circ}$   $\rightarrow \sim 2 \text{ kG}$ Solenoid: 26.2 T  $\rightarrow 2x3.5 \text{ m}; 38.5 \text{ kG}$ 

Design is based on paper by Moffeit, Woods, Schuler, Moenig and Bambade (2005), SLAC-TN-05-045

### Spin Rotation – Alternatives

Example: Spin rotation at 1.7 GeV

 $\rightarrow$  less stringent requirements for solenoid

### Proposal: spin rotation using Wien filter near gun $\rightarrow$ concern: emittance blow-up (?)



ΪĹ

### ic Compton polarimeter @ 5 Ge



%

Measurement error,

Polarimetry at the CLIC sources





| Method                  | e+<br>Energy        |                                                               | precision                              |                                                    |
|-------------------------|---------------------|---------------------------------------------------------------|----------------------------------------|----------------------------------------------------|
| Compton<br>transmission | 125 MeV             | Destructive<br>→<br>use only very<br>few bunches<br>per pulse | Stat: few %;<br>Syst. will<br>dominate | Prototype<br>(E166, )<br>ILC design<br>Simulations |
| Bhabha                  | 400 MeV             | Almost non-<br>destructive                                    | Stat: few %;<br>Syst. will<br>dominate | ILC design<br>Simulations                          |
| Compton                 | 5 GeV<br>(after DR) | Non-<br>destructive                                           | Stat: few %;<br>Syst. will<br>dominate | ILC design simulations                             |

### e+ spin rotation and helicity reversal @

K. Moffeit et al., SLAC-TN-05-045  $\rightarrow$  fast reversal before DR (5 GeV)



Can perform 4 independent measurements (s-channel vector exch.)

$$\sigma_{++} = \sigma_{u} \left[ 1 - P_{e^{+}} P_{e^{-}} + A_{LR} \left( + P_{e^{+}} - P_{e^{-}} \right) \right]$$
  

$$\sigma_{--} = \sigma_{u} \left[ 1 - P_{e^{+}} P_{e^{-}} + A_{LR} \left( - P_{e^{+}} + P_{e^{-}} \right) \right]$$
  

$$\sigma_{-+} = \sigma_{u} \left[ 1 + P_{e^{+}} P_{e^{-}} + A_{LR} \left( - P_{e^{+}} - P_{e^{-}} \right) \right]$$
  

$$\sigma_{+-} = \sigma_{u} \left[ 1 + P_{e^{+}} P_{e^{-}} + A_{LR} \left( + P_{e^{+}} + P_{e^{-}} \right) \right]$$

=0 (SM) if both beams 100% polarized

Standard Model s-channel

SLC:  $\sigma_{\mbox{-}0}$  and  $\sigma_{\mbox{+}0}$  used for  $A_{\mbox{\tiny LR}}$  measurement

$$A_{LR} = \frac{\sigma_{-} - \sigma_{+}}{\sigma_{-} + \sigma_{+}} \cdot \frac{1}{P_{e^{-}}}$$

ILC:

İİİ.

$$A_{LR} = \frac{\sigma_{-+} - \sigma_{+-}}{\sigma_{-+} + \sigma_{+-}} \cdot \frac{1 + P_{e^{-}} P_{e^{+}}}{P_{e^{-}} + P_{e^{+}}}$$
$$= \frac{\sigma_{-+} - \sigma_{+-}}{\sigma_{-+} + \sigma_{+-}} \cdot \frac{1}{P_{eff}}$$