Dosimetry of light-ion beams

Hugo Palmans

EBG MedAustron GmbH, Wiener Neustadt, Austria and National Physical Laboratory, Teddington, UK hugo.palmans@npl.co.uk

Overview

- Primary standards calorimeters
- Reference dosimetry ionization chambers
- Relative dosimetry LET dependence of detectors
- Particular issue with scanned beams

Calorimetry

$$D_{med} = c_{med} \Delta T \frac{1}{1-h} \Pi k_i$$

Palmans et al (2004) Phys Med Biol 49:3737

Calorimetry

$$D_{med} = c_{med} \Delta T \frac{1}{1-h} \Pi k_i$$

Water calorimetry - heat defect

MedAustron 🗳

Graphite calorimetry: D_g to D_w ProtonsCarbon ions

NPL

MedAustron 🎴

Reference dosimetry with ionization chambers

Ideally:

 $D_{w,Q} = M_Q N_{D,w,Q}$

Present-day reality:

$$D_{w,Q} = M_Q N_{D,w,Q_0} k_{Q,Q_0}$$

with

$$k_{Q,Q_0} = \frac{(W_{air})_Q (s_{w,air})_Q p_Q}{(W_{air})_{Q_0} (s_{w,air})_{Q_0} p_{Q_0}}$$

This is the formalism of IAEA TRS-398 and ICRU Report 78

Ionization chambers: *s*_{w,air}

Ionization chambers: W_{air} / protons

Ionization chambers: W_{air} / ions

NPLO

Ionization chambers – perturbations Palmans et al. (2011) Proc IDOS, IAEA-CN182-230

Ionization chamber perturbations

MedAustron 🎴

Volume recombination vs pulse length

Volume recombination vs pulse length

Volume recombination vs pulse length

Initial recombination in carbon ions

Reference dosimetry scanned beams

FIG. 5. Integral doses in Gy mm^2/MU at the depth of 2 cm as a function of energy. Circles are measured integral doses; squares are corrected integral doses; and dashed line is the correction factors.

Reference dosimetry scanned beams

Jaekel et al Phys Med Biol2004

 $D_{w,Q}^{cyl} = M_Q^{cyl} N_{D,w,Q_0}^{cyl} k_{Q,Q_0}^{cyl}$

$$n = \frac{D_{w,Q}^{cyl} \Delta X \Delta Y}{(S/\rho)_w}$$

ΔX

MedAustron 🎴

Relative dosimetry - LET dependence alanine

Fig. 1. Calculated relative efficiencies for infinitesimal thin detectors, without fading effects.

GSI ¹²C ion beam

Relative dosimetry - LET dependence RCfilm

PTW microDiamond

Rossomme et al (2016) Phys. Med. Biol. *submitted*

MedAustron 🎴

Tissue-equivalence

Palmans et al. (2005) Phys. Med. Biol. 50:991-1000

Other issues not discussed

- Partial irradiation detectors
- Detector arrays
- **Resolution requirements**
- Audit and dose verification

Alternative quantities for absorbed dose (microdosimetry and nanodosimetry based)

- Track structure approaches
- **Biological dosimetry**

NPL

Additional reading

Practical Implementation of Light Ion Beam Treatments

Michael Farley Moyers Stanislav M. Vatnitsky

Additional reading

Proton and Carbon Ion Therapy

WAGING IN MEDICAL DIAGNOSIS AND THERAPY

Edited by C.-M. Charlie Ma Tany Lomax

CRC PHH

