Λ_c decays at BESIII

Xiaozhong Huang

(on behalf of the **BES**III collaboration)

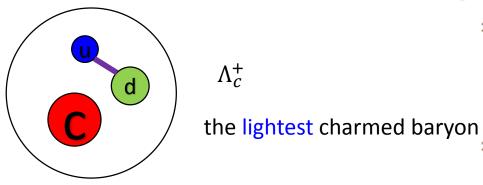
Nanjing University

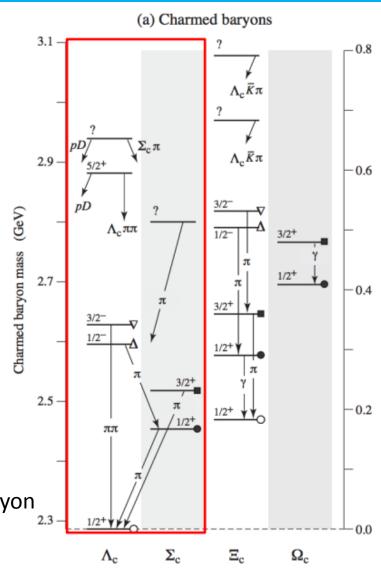
XIIth Rencontres du Vietnam Gặp gỡ khoa học tại Việt Nam lần thứ 12 Physics in Collision

ICISE, QUY NHON, VIETNAM, SEPTEMBER 13 - 18, 2016

Outline

Introduction

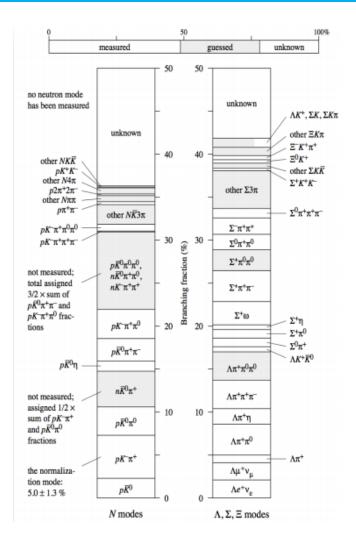

$\Box \Lambda_c$ decays


- Semi-leptonic decays
 - $\Lambda_c^+ \to \Lambda e^+ \nu_e$
 - $\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu$
- Hadronic decays
 - Absolute BFs of Λ_c hadronic decays
 - $\Lambda_c^+ \rightarrow n K_s^0 \pi^+$
 - •

□Summary

Introduction

- Most of the charmed baryons will eventually decay to Λ_c^+ baryon
- Cornerstone of charmed baryon spectroscopy
- Provide essential input for studying bflavored baryon decays involving a Λ_c^+ baryon in the final state
- Help understand the weak interaction inside a baryon



Status of Λ_c decays

Since the discovery of Λ_c^+ baryon in 1973, the progress of Λ_c decays is relatively slow compared to charmed meson.

- Total branching fraction: smaller than 65% (PDG2015)
- Many unobserved decay channels
- □ Large uncertainties (most larger than 20%)
- Most measurements of Λ_c decays are relative to the BF of $\Lambda_c^+ \rightarrow pK^-\pi^+$ channel, the absolute BFs are not well determined.

Beijing electron positron collider(BEPC)

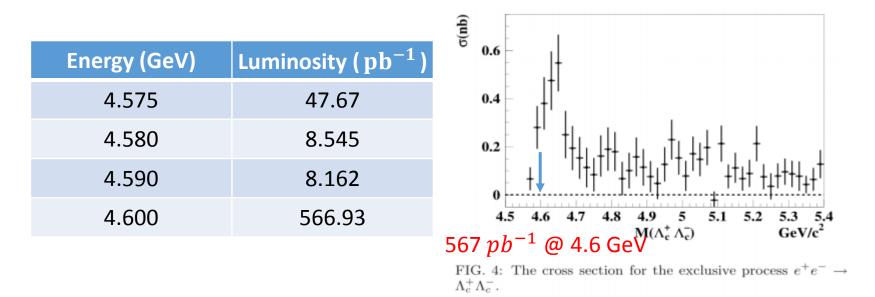
Beijing electron positron collider BEPCII

Storage ring

BESIII detector W Gade Ma state

2004: start BEPCII construction 2008: test run of BEPCII 2009-now: BESIII data taking Beam energy: 1.0-2.3GeV Design Luminosity: 1×10^{33} cm⁻²s⁻¹@ \sqrt{s} =3.770GeV (achieved in April, 2016)

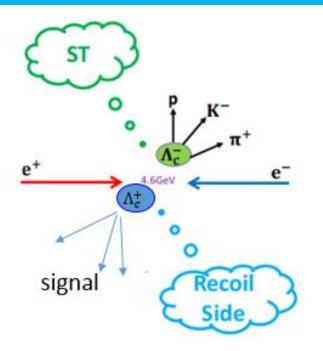
Linac


BESIII detector

NIM A614, 345 (2010)

The BESIII Detector Drift Chamber (MDC) Super-conducting magnet (1.0 tesla) $\sigma P/P (^{0}/_{0}) = 0.5\%(1 \text{GeV})$ $\sigma_{dE/dx} (^{0}/_{0}) = 6\%$ Time Of Flight (TOF) μCounter σ_{τ} : 90 ps Barrel 110 ps endcap 8-9 layers RPC $\sigma E/VE(^{0}/_{0}) = 2.5 \% (1 \text{ GeV})$ EMC: $\delta R\Phi = 1.4 \text{ cm}^2 1.7 \text{ cm}$ $\sigma_{z,\phi}(cm) = 0.5 - 0.7 cm/VE$ (Csl)

Data Samples


In 2014, BESIII collected 567 pb^{-1} data just above the threshold of $\Lambda_c^+ \overline{\Lambda}_c^-$ pairs (E_{cms} = 4.600 GeV)

This dataset is unique in the world

- **D** Expected to perform precise measurement and search for new decay modes
- **absolute** BF measurement(just above threshold, Double tag)

Double tag technique

- Single tag (ST)side : (1)reconstruct one $\overline{\Lambda}_c^-$ anti-baryon via hadronic decays (large branching fractions and low background)
 - Beam-constraint mass: $M_{BC} \equiv \sqrt{E_{beam}^2 |\vec{p}_{\Lambda_c^+}|}$ Energy difference: $\Delta E = E_{\Lambda_c^+} E_{beam}$

 - Charge conjugation is always implied in the work

BES

K⁺

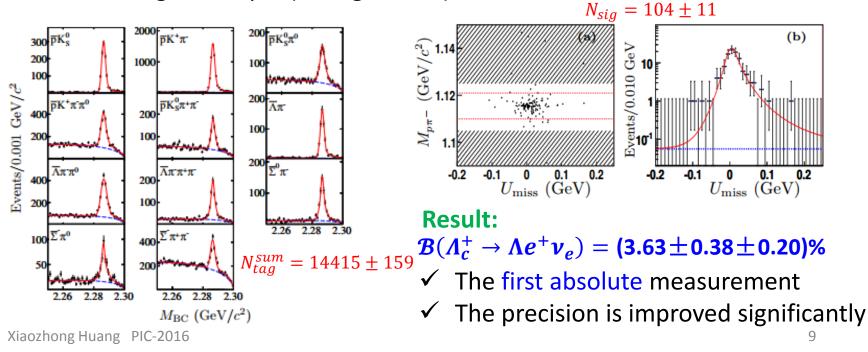
(2) Recoil side(DT): semi-leptonic hadronic

Advantages:

- Obtain the absolute branching fractions with lower background
- Most systematic uncertainty in the ST side are cancelled out

8

Absolute branching fraction of $\Lambda_c^+ \rightarrow \Lambda e^+ v_e$ PRL. 115, 221805

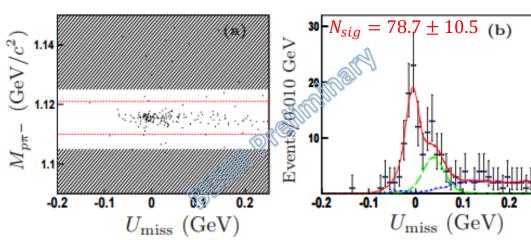

Motivation:

- □ Theoretical predictions: 1.4% 9.2%
- **D** PDG2015: $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) = (2.9 \pm 0.5)\%$
- Not direct measurement

$$\begin{split} U_{\rm miss} &= E_{\rm miss} - c |\vec{p}_{\rm miss}| \\ E_{\rm miss} &= E_{\rm beam} - E_{\Lambda} - E_{e^+} \\ \vec{p}_{\rm miss} &= \vec{p}_{\Lambda_c^+} - \vec{p}_{\Lambda} - \vec{p}_{e^+} \\ \vec{p}_{\Lambda_c^+} &= -\hat{p}_{\rm tag} \sqrt{E_{\rm beam}^2 - m_{\bar{\Lambda}_c^-}^2} \end{split}$$

Technique:

Double tag technique (11 tag modes)


Absolute branching fraction of $\Lambda_c^+ \rightarrow \Lambda \mu^+ \nu_{\mu}$

Motivation:

- □ Theoretical predictions: 1.4% 9.2%
- **D** PDG2015: $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) = (2.7 \pm 0.6)\%$
- not direct measurement

Technique:

Double tag technique (11 tag modes)

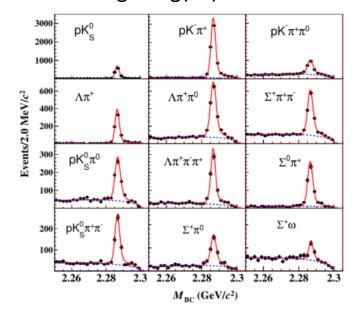
Preliminary Result:

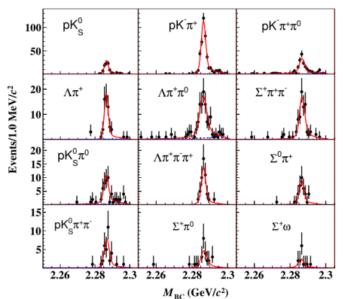
$$\mathcal{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu_{\mu}) = (3.49 \pm 0.46 \pm 0.27)\%$$
$$\frac{\mathcal{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu_{\mu})}{\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)} = 0.96 \pm 0.16 \pm 0.04$$

✓ The first absolute measurement
 ✓ The precision is improved a lot

Absolute BFs of Λ_c hadronic decays (CF)

PRL. 116, 052001


Motivation:


- **D** Most relative to the $pK^-\pi^+$ channel
- **D** No direct measurement on the BF of $pK^-\pi^+$ channel

Technique:

Xiaozhong Huang PIC-2016

Result:

Absolute BFs of Λ_c hadronic decays (CF)

- The precision of the absolute BFs are improved significantly
- **D** BF for $pK^{-}\pi^{+}$ is consistent with PDG value, but lower than Belle's value with a significance of 2σ .
- \square Improved absolute BF of $pK^-\pi^+$ are key to calibrate other decays

A global least-square fitter is utilized to improve the measured precision for 12 Λ_c hadronic decay channels

Mode	This work (%)	PDG (%)	BELLE B
pKs	$1.52 \pm 0.08 \pm 0.03$	1.15 ± 0.30	
$pK^{-}\pi^{+}$	$5.84 \pm 0.27 \pm 0.23$	5.0 ± 1.3	$6.84 \pm 0.24^{+0.21}_{-0.27}$
$pK_{S}^{0}\pi^{0}$	$1.87 \pm 0.13 \pm 0.05$	1.65 ± 0.50	
$pK_{S}^{0}\pi^{+}\pi^{-}$	$1.53 \pm 0.11 \pm 0.09$	1.30 ± 0.35	
$pK^{-}\pi^{+}\pi^{0}$	$4.53 \pm 0.23 \pm 0.30$	3.4 ± 1.0	
$\Lambda \pi^+$	$1.24 \pm 0.07 \pm 0.03$	1.07 ± 0.28	
$\Lambda \pi^+ \pi^0$	$7.01 \pm 0.37 \pm 0.19$	3.6 ± 1.3	
$\Lambda \pi^+ \pi^- \pi^+$	$3.81 \pm 0.24 \pm 0.18$	2.6 ± 0.7	
$\Sigma^0 \pi^+$	$1.27 \pm 0.08 \pm 0.03$	1.05 ± 0.28	
$\Sigma^+ \pi^0$	$1.18 \pm 0.10 \pm 0.03$	1.00 ± 0.34	
$\Sigma^+ \pi^+ \pi^-$	$4.25 \pm 0.24 \pm 0.20$	3.6 ± 1.0	
$\Sigma^+ \omega$	$1.56 \pm 0.20 \pm 0.07$	2.7 ± 1.0	

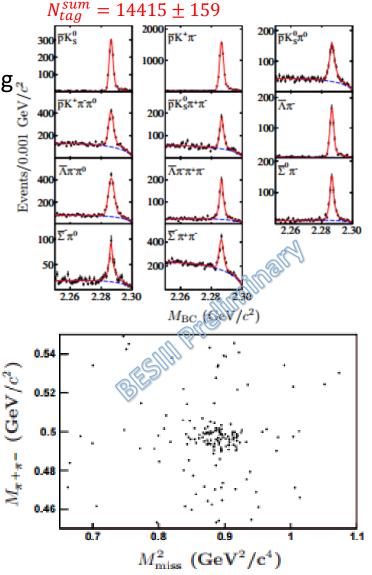
 $N_{\Lambda_c^+ \overline{\Lambda_c^-}} = (105.9 \pm 4.8 \pm 0.5) \times 10^3$

$N_{i^+}^{ST} = N_{\Lambda^+ \overline{\Lambda} \overline{c}} B_i \varepsilon_{i^+}^{ST}$ $N_{i^+}^{DT} = N_{\Lambda_c^+ \overline{\Lambda_c^-}} B_i B_j \varepsilon_{i^+ i^-}^{DT}$ $B = \frac{N_{sig}}{N_{tag} \times \varepsilon_{sig} / \varepsilon_{tag,sig}}$

PRL. 116, 052001

Observation of $\Lambda_c^+ ightarrow nK_s^0 \pi^+$

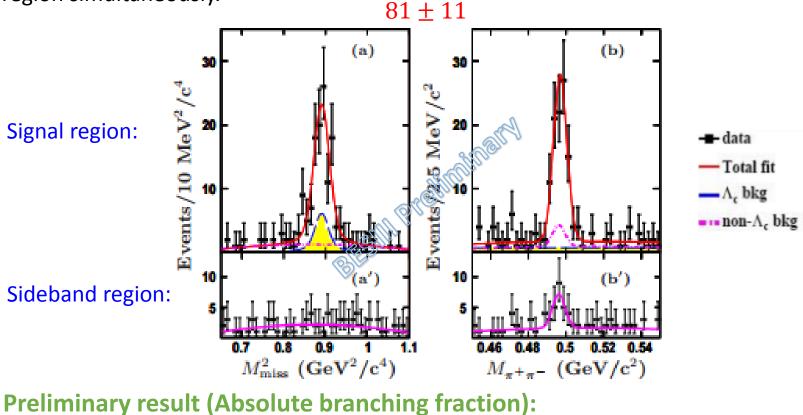
Motivation:


- No decay channels with final states containing neutron
- The relative BF of neutron-involved mode to proton-involved mode is essential to test the isospin symmetry for Λ_c^+ decays.

Technique:

Double tag technique (11 tag modes)

□ The missing neutron is detected by:


$$M_{miss}^{2} = (p_{\Lambda_{c}^{+}} - p_{K_{s}^{0}} - p_{\pi^{+}})^{2}$$
$$= E_{miss}^{2} - c^{2} |\vec{p}_{miss}|^{2}$$

Xiaozhong Huang PIC-2016

Observation of $\Lambda_c^+ ightarrow nK_s^0 \pi^+$

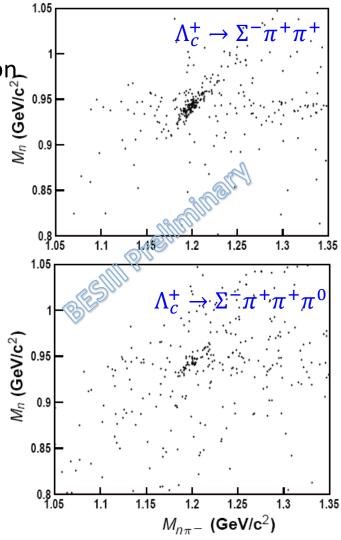
Fit to M_{miss}^2 and $M_{\pi^+\pi^-}$ spectra in (a,b) Λ_c^+ signal region and (a',b') Λ_c^+ sideband region simultaneously.

 $\mathcal{B}(\Lambda_c^+ \rightarrow nK_s^0\pi^+) = (1.82 \pm 0.23 \pm 0.11)\%$ First observation of Λ_c^+ decays involving neutron. Xiaozhong Huang PIC-2016

 $\Lambda_c^+ o \Sigma^- \pi^+ \pi^+$ and $\Lambda_c^+ o \Sigma^- \pi^+ \pi^+ \pi^0$

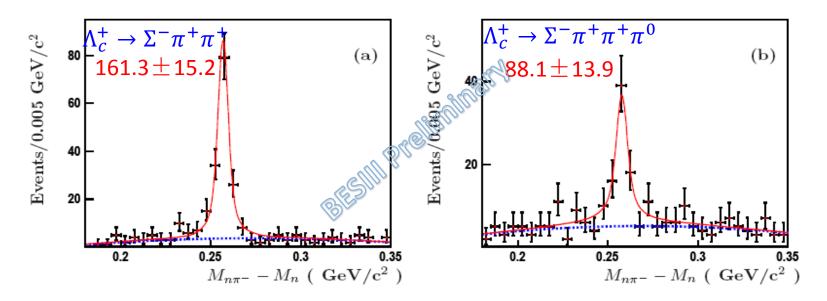
Motivation:

□ Only one Λ_c^+ decay channel with Σ^- hyperonis measured. $\mathcal{B} (\Lambda_c^+ \to \Sigma^- \pi^+ \pi^+) = (2.3 \pm 0.4)\%)$


Search for new decay modes

Technique:

Double tag technique (11 tag modes)


□ $Σ^-$ is reconstructed by: $Σ^- → nπ^-$ The missing neutron is detected by:

$$M_n^2 = M_{miss}^2 = (p_{\Lambda_c^+} - p_{K_s^0} - p_{\pi^+})^2 = E_{miss}^2 - c^2 |\vec{p}_{miss}|^2$$

$$\Lambda_c^+ o \varSigma^- \pi^+ \pi^+$$
 and $\Lambda_c^+ o \varSigma^- \pi^+ \pi^+ \pi^0$

Fit to the mass difference of $M_{n\pi^-}$ and M_n

Preliminary results (Absolute Branching fraction): $\mathcal{B}(\Lambda_c^+ \to \Sigma^- \pi^+ \pi^+) = (1.81 \pm 0.17)\%$ (PDG2015: $(2.3 \pm 0.4)\%$) $\mathcal{B}\left(\Lambda_{c}^{+}\rightarrow\Sigma^{-}\pi^{+}\pi^{+}\pi^{0}\right)=(2.11\pm0.33)\%$

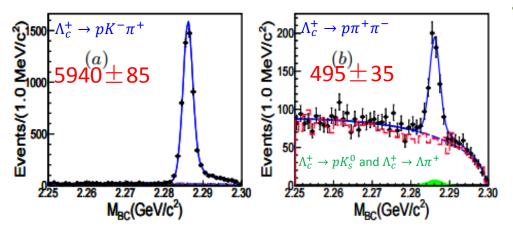
(First observation)

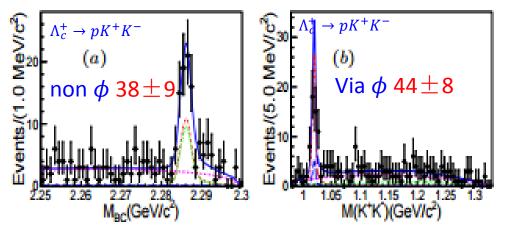
Statistical only Systematic: ~5%

SCS decays: $\Lambda_c^+ \rightarrow p\pi^+\pi^-$ and $\Lambda_c^+ \rightarrow pK^+K^-$ Submitted to PRL arXiv:1608.00407

Motivation:

\BoxShed light on dynamics of Λ_c^+ decays


 $\Box \Lambda_c^+ \rightarrow p \phi$ is of particular interest since it proceeds internal W-emission only.


SCS decays: $\Lambda_c^+ ightarrow p \pi^+ \pi^-$ and $\Lambda_c^+ ightarrow p K^+ K^-$

Submitted to PRL arXiv:1608.00407

Fit to the M_{BC} distribution

two-dimensional unbinned maximum likelihood fit

Technique:

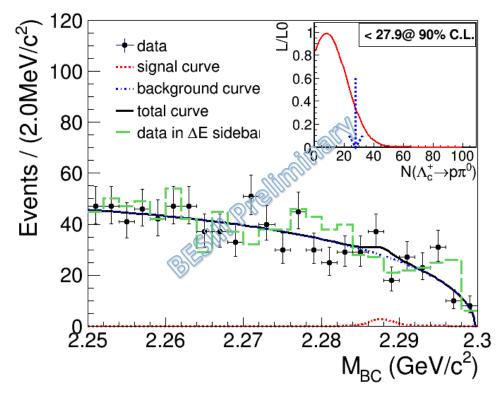
D Relative to $pK^-\pi^+$

□ Input BESIII measurement:

 $\mathcal{B}(\Lambda_c^+ \to p K^- \pi^+) = (5.84 \pm 0.27 \pm 0.23)\%$

Result:

Decay modes	$\mathcal{B}_{\text{mode}}/\mathcal{B}_{\text{ref.}}$ (This work)	$B_{\text{mode}}/B_{\text{ref.}}$ (PDG average)
$\Lambda_c^+ \rightarrow p \pi^+ \pi^-$	$(6.70 \pm 0.48 \pm 0.25) \times 10^{-2}$	0.069 ± 0.036
$\Lambda_c^+ \rightarrow p\phi$	$(1.81 \pm 0.33 \pm 0.13) \times 10^{-2}$	0.0164 ± 0.0032
$\Lambda_c^+ \rightarrow pK^+K^- (\text{non-}\phi)$	$(9.36 \pm 2.22 \pm 0.71) \times 10^{-3}$	$0.007 \pm 0.002 \pm 0.002$
-	$\mathcal{B}_{\text{mode}}$ (This work)	$\mathcal{B}_{\text{mode}}$ (PDG average)
$\Lambda_c^+ \rightarrow p \pi^+ \pi^-$	$(3.91 \pm 0.28 \pm 0.15 \pm 0.24) \times 10^{-3}$	
$\Lambda_c^+ \rightarrow p\phi$	$(1.06 \pm 0.19 \pm 0.08 \pm 0.06) \times 10^{-3}$	
$\Lambda_c^+ \rightarrow pK^+K^- (\text{non-}\phi)$	$(5.47 \pm 1.30 \pm 0.41 \pm 0.33) \times 10^{-4}$	$(3.5 \pm 1.7) \times 10^{-4}$


Uncertainty in the second column: statistical + systematic + reference mode

SCS decays: $\Lambda_c^+ o p\eta$ and $\Lambda_c^+ o p\pi^0$

40 **Motivation:** Events / (2.5MeV/c²) 41 ± 9 (a)Not measured yet 30 □ In the SU(3) flavor symmetry $\mathcal{B}(\Lambda_c^+ \to p\eta) >> \mathcal{B}(\Lambda_c^+ \to p\pi^0)$ 20 10 Simultaneous fit to the M_{BC} distribution a) $\eta \rightarrow \gamma \gamma$ b) $\eta \rightarrow \pi^+ \pi^- \pi^0$ 15 signal curve 12 + 3(b)--- background curve total curve 10 data in ∧E sideband data in $M_{\pi^{+}\pi^{-}\pi^{0}}$ sideband **Preliminary result:** $\mathcal{B}(\Lambda_{c}^{+} \rightarrow p\eta) = (1.24 \pm 0.28 \pm 0.1) \times 10^{-3}$ 5 First evidence for $\Lambda_c^+ \rightarrow p\eta$ (4.2 σ) 225 2.26 2.28 2.29 2.272.3 M_{BC} (GeV/c²)

SCS decays: $\Lambda_c^+
ightarrow p\eta$ and $\Lambda_c^+
ightarrow p\pi^0$

$$\Lambda_c^+ o p\pi^0$$
: no obvious signal

Fit to the M_{BC} distribution

Upper limit:

 $\mathcal{B}ig(\Lambda_c^+ o p \pi^0 ig) < 2.\,7 imes 10^{-4}$ (@90% C.L.)

Compared with $\mathcal{B}(\Lambda_c^+ \to p\eta)$: $\mathcal{B}(\Lambda_c^+ \to p\pi^0)/\mathcal{B}(\Lambda_c^+ \to p\eta) < 0.24$

Summary

Based on the 567 pb^{-1} data taken just above the threshold of $\Lambda_c^+ \overline{\Lambda}_c^-$ pairs, BESIII presents

□ Improved measurements of many hadronic and semi-leptonic decays

$$\checkmark \Lambda_c^+ \to p K^- \pi^+$$

$$\checkmark \Lambda_c^+ \to \Lambda l^+ \nu_l$$

$$\checkmark \dots$$

□ Evidence/Observation of other decay modes for the first time

✓
$$\Lambda_c^+ \rightarrow p\eta$$
 (evidence)
✓ $\Lambda_c^+ \rightarrow \Sigma^- \pi^+ \pi^+ \pi^0$ (observation)
✓ $\Lambda_c^+ \rightarrow nK_s^0 \pi^+$ (observation)
✓ $\Lambda_c^+ \rightarrow p\pi^+ \pi^-$ (observation)

They are important to our understanding of the Λ_c^+ baryon.

More results are coming !

THANK YOU FOR YOUR ATTENTION !