

Effect of binning on measurements of the transverse momentum distribution of Z/γ^* bosons in proton-proton collisions

Thi Kieu Oanh Doan

kieu_y5@yahoo.com Tay Bac University, Son La, Vietnam

Thi Hong Van Nguyen

nhvan@iop.vast.vn Institute of Physics, Ha Noi, Vietnam

Contents

- Transverse momentum of Z/γ^* (p_T^Z)
- Latest p_T^Z measurements at the LHC
- Why binning effect?
- What we do in binning effect study?
 - 1. The "true" p_T^Z spectrum
 - 2. Resolution of p_T^Z measurements
 - 3. Purity, binning and smearing
 - 4. Unfolding the reconstructed p_T^Z spectra
- Results
- Conclusion

Transverse momentum of Z/γ^* (p_T^Z)

Inclusive Z/γ^* production and decay at hadron colliders

- Well known cross section
- Calculated up to NNLO

Motivations of p_T^Z measurements

- Provide a test of pQCD.
- Study the low p^Z_T region where non-perturbative effects may play a role.
 - Help in improving the modelling of *W* boson production needed for a precise measurement of the *W* mass.
 - Help in understanding the low p_T spectrum of the Higgs boson.

Physics Letters B 749 (2015) 187-209: permil uncertainties at low p_T^Z

Table 1

Measured double differential fiducial cross section normalised to the inclusive fiducial cross section in units of GeV⁻¹.

q _т [GeV]	$0 \le y < 0.4$			$0.4 \le y < 0.8$			$0.8 \le y < 1.2$			$1.2 \le y < 1.6$			$1.6 \le y < 2$		
	$d^2\sigma/\sigma_{inc}$	δ _{stat} [%]	δ _{syst} [%]	$d^2\sigma/\sigma_{\rm inc}$	δ _{stat} [%]	δ _{syst} [%]	$d^2\sigma/\sigma_{inc}$	δ _{stat} [%]	δ _{syst} [%]	$d^2\sigma/\sigma_{inc}$	δ _{stat} [%]	δ _{syst} [%]	$d^2\sigma/\sigma_{inc}$	δ _{stat} [%]	δ _{syst} [%]
[0, 20]	2.10×10^{-2}	0.09	0.30	2.10×10 ⁻²	0.09	0.30	1.96×10^{-2}	0.10	0.30	1.47×10^{-2}	0.12	0.31	7.88×10^{-3}	0.17	0.45
[20, 40]	6.20×10^{-3}	0.18	0.44	6.08×10 ⁻³	0.19	0.42	5.50 × 10 ⁻³	0.20	0.46	4.11×10^{-3}	0.24	0.59	2.17×10^{-3}	0.34	0.81
[40, 60]	2.28×10^{-4}	0.30	0.84	2.22×10	0.31	0.80	1.99×10^{-4}	0.35	0.85	1.53×10^{-4}	0.40	1.03	8.11×10^{-4}	0.57	1.35
[60, 80]	9.79 × 10 ⁻⁴	0.47	0.99	9.48×10 ⁻⁴	0.48	0.94	8.85 × 10 ⁻⁴	0.52	0.96	6.82×10^{-4}	0.62	1.16	3.75×10^{-4}	0.87	1.56
[80, 100]	4.73×10^{-4}	0.69	1.33	4.56×10^{-4}	0.71	1.26	4.23×10^{-4}	0.77	1.26	3.42×10^{-4}	0.89	1.43	1.92×10^{-4}	1.25	1.89
[100, 120]	2.33×10^{-4}	1.02	1.44	2.34×10 ⁻⁴	1.01	1.36	2.19×10^{-4}	1.10	1.37	1.80×10^{-4}	1.25	1.50	1.01×10^{-4}	1.76	2.03
[120, 140]	1.31×10^{-4}	1.37	1.51	1.24×10^{-4}	1.42	1.50	1.15×10^{-4}	1.55	1.53	1.01×10^{-4}	1.72	1.58	6.03×10^{-5}	2.40	2.13
[140, 170]	6.42×10^{-5}	1.57	1.59	6.34×10^{-5}	1.57	1.54	6.05×10^{-5}	1.68	1.56	5.13×10^{-5}	1.93	1.68	3.00×10^{-5}	2.67	2.30
[170, 200]	2.88×10^{-5}	2.36	1.91	2.93×10 ⁻⁵	2.35	1.88	2.90×10^{-5}	2.61	1.93	2.40×10^{-3}	2.98	2.14	1.49×10^{-3}	4.00	2.88
[200, 1000]	1.31×10^{-6}	2.01	1.64	1.30×10 ⁻⁶	1.96	1.57	1.17×10^{-6}	2.21	1.75	9.90×10^{-7}	2.45	1.95	5.54×10^{-7}	3.39	2.39

Eur. Phys. J. C (2016) 76:291: permil uncertainties at low p_T^Z

Table 30 The values of $(1/\sigma) d\sigma/dp_1^{\ell\ell}$ in each bin of $p_1^{\ell\ell}$ for the electron and muon channels separately (for various generator-level definitions) and for the Born-level combination in the kinematic region 66 GeV $\leq m_{\ell\ell} < 116$ GeV, $0.0 \leq |y_{\ell\ell}| < 2.4$. The associated statistical and systematic (both uncorrelated and correlated between bins) are provided in percentage form

Bin	$(1/\sigma) d\sigma/dp_{\ell}^{\ell\ell} \pm \text{Statistical [\%]} \pm \text{Uncorrelated systematic [\%]} \pm \text{Correlated systematic [\%]}$										
	Electron channel		Muon channel	Combination							
	Dressed	Born	Bare	Dressed	Born	Born					
0.0-2.0	$2.608\mathrm{e}{-02}\pm0.3\pm0.1\pm0.9$	$2.677\mathrm{e}{-02}\pm0.3\pm0.1\pm0.9$	$2.568\mathrm{e}{-02}\pm0.2\pm0.1\pm0.9$	$2.626\mathrm{e}{-02}\pm0.2\pm0.1\pm0.9$	$2.696\mathrm{e}{-02}\pm0.2\pm0.1\pm0.9$	$2.669e-0 \pm 0.2 \pm 0.1 \pm 0.5$					
2.0-4.0	$5.441\mathrm{e}{-02}\pm0.2\pm0.1\pm0.5$	$5.553\mathrm{e}{-02} \pm 0.2 \pm 0.1 \pm 0.6$	$5.337\mathrm{e}{-02}\pm0.1\pm0.1\pm0.3$	$5.428e{-}02\pm0.1\pm0.1\pm0.3$	$5.541\mathrm{e}{-02}\pm0.2\pm0.1\pm0.4$	$5.545e-0 \pm 0.1 \pm 0.1 \pm 0.2$					
4.0-6.0	$5.505e - 02 \pm 0.2 \pm 0.1 \pm 0.3$	$5.560e - 02 \pm 0.2 \pm 0.1 \pm 0.3$	$5.483e - 02 \pm 0.1 \pm 0.1 \pm 0.4$	$5.525e-02 \pm 0.1 \pm 0.1 \pm 0.4$	$5.579e - 02 \pm 0.1 \pm 0.1 \pm 0.5$	$5.590e - 0 \pm 0.1 \pm 0.1 \pm 0.3$					
6.0-8.0	$4.831\mathrm{e}{-02}\pm0.2\pm0.1\pm0.4$	$4.831\mathrm{e}{-02}\pm0.2\pm0.1\pm0.5$	$4.856\mathrm{e}{-02}\pm0.2\pm0.1\pm0.2$	$4.851e{-}02\pm0.2\pm0.1\pm0.2$	$4.851\mathrm{e}{-02}\pm0.2\pm0.1\pm0.6$	$4.847e - 0 \pm 0.1 \pm 0.1 \pm 0.3$					
8.0-10.0	$4.084\mathrm{e}{-02}\pm0.2\pm0.1\pm0.4$	$4.052\mathrm{e}{-02} \pm 0.2 \pm 0.1 \pm 0.5$	$4.115\mathrm{e}{-02}\pm0.2\pm0.1\pm0.2$	$4.085e{-02}\pm0.2\pm0.1\pm0.2$	$4.055e{-}02\pm0.2\pm0.1\pm0.6$	$4.047e - 0 \pm 0.1 \pm 0.1 \pm 0.3$					
10.0-12.0	$3.429e{-}02 \pm 0.2 \pm 0.1 \pm 0.2$	$3.389e{-02} \pm 0.2 \pm 0.1 \pm 0.3$	$3.458\mathrm{e}{-02}\pm0.2\pm0.1\pm0.2$	$3.420e{-}02\pm0.2\pm0.1\pm0.2$	$3.378\mathrm{e}{-02}\pm0.2\pm0.1\pm0.4$	$3.384e - 0 \pm 0.1 \pm 0.1 \pm 0.2$					
12.0-14.0	$2.881e{-}02\pm0.2\pm0.1\pm0.3$	$2.838e{-}02 \pm 0.2 \pm 0.1 \pm 0.3$	$2.919e - 02 \pm 0.2 \pm 0.1 \pm 0.2$	$2.878e - 02 \pm 0.2 \pm 0.1 \pm 0.2$	$2.835e{-}02\pm0.2\pm0.1\pm0.3$	$2.838e - 0 \pm 0.2 \pm 0.1 \pm 0.2$					
14.0-16.0	$2.431e-02 \pm 0.3 \pm 0.1 \pm 0.3$	$2.393e{-}02\pm0.3\pm0.1\pm0.3$	$2.479\mathrm{e}{-02}\pm0.2\pm0.1\pm0.2$	$2.443e{-}02\pm0.2\pm0.1\pm0.2$	$2.403e{-}02\pm0.2\pm0.1\pm0.2$	$2.404e-0 \pm 0.2 \pm 0.1 \pm 0.1$					
16.0-18.0	$2.076e - 02 \pm 0.3 \pm 0.1 \pm 0.2$	$2.041e-02 \pm 0.3 \pm 0.1 \pm 0.2$	$2.109e - 02 \pm 0.2 \pm 0.1 \pm 0.2$	$2.077e-02 \pm 0.2 \pm 0.1 \pm 0.2$	$2.042e - 02 \pm 0.2 \pm 0.1 \pm 0.2$	$2.043e - 0 \pm 0.2 \pm 0.1 \pm 0.1$					
18.0-20.0	$1.782e - 02 \pm 0.3 \pm 0.2 \pm 0.3$	$1.755e{-}02\pm0.3\pm0.2\pm0.3$	$1.805e{-}02\pm0.3\pm0.1\pm0.2$	$1.781e{-}02\pm0.3\pm0.1\pm0.2$	$1.754\mathrm{e}{-02}\pm0.3\pm0.1\pm0.2$	$1.756e - 0 \pm 0.2 \pm 0.1 \pm 0.2$					
20.0-22.5	$1.510e - 02 \pm 0.3 \pm 0.1 \pm 0.3$	$1.490e-02 \pm 0.3 \pm 0.1 \pm 0.3$	$1.520e - 02 \pm 0.3 \pm 0.1 \pm 0.3$	$1.503e - 02 \pm 0.3 \pm 0.1 \pm 0.3$	$1.485e - 02 \pm 0.3 \pm 0.1 \pm 0.3$	$1.488e - 0 \pm 0.2 \pm 0.1 \pm 0.2$					
22.5-25.0	$1.259e - 02 \pm 0.3 \pm 0.2 \pm 0.4$	$1.247e{-}02\pm0.3\pm0.2\pm0.4$	$1.275\mathrm{e}{-02}\pm0.3\pm0.1\pm0.2$	$1.266e{-}02\pm0.3\pm0.1\pm0.2$	$1.253\mathrm{e}{-02}\pm0.3\pm0.1\pm0.2$	$1.251e - 0 \pm 0.2 \pm 0.1 \pm 0.2$					
25.0-27.5	$1.072e-02 \pm 0.4 \pm 0.2 \pm 0.4$	$1.065\mathrm{e}{-02}\pm0.4\pm0.2\pm0.4$	$1.074\text{e}{-02}\pm0.3\pm0.1\pm0.3$	$1.068e{-}02\pm0.3\pm0.1\pm0.3$	$1.061\mathrm{e}{-02}\pm0.3\pm0.1\pm0.3$	$1.062e-0 \pm 0.2 \pm 0.1 \pm 0.2$					
27.5-30.0	$9.172e - 03 \pm 0.4 \pm 0.2 \pm 0.5$	$9.124e-03 \pm 0.4 \pm 0.2 \pm 0.5$	$9.089e - 03 \pm 0.3 \pm 0.1 \pm 0.3$	$9.064e - 03 \pm 0.3 \pm 0.1 \pm 0.3$	$9.014e-03 \pm 0.3 \pm 0.1 \pm 0.3$	$9.062e-0 \pm 0.3 \pm 0.1 \pm 0.2$					

 \Rightarrow Looking for any tiny effects on these precise measurements such as effect of p_T^Z binning.

- p_T^Z measurement presentation:
 - Results of p_T^Z measurements are presented in the form:
 - $\frac{1}{\sigma} \cdot \frac{d\sigma}{dp_T^Z}$, where σ is measured cross section in choosen phase space.
 - The measured p_T^Z spectrum (with choosen binning) is corrected for detector and QED final state radiation (FSR) effects using an unfolding technique to the underlying "true" spectrum.
- Which binning should be choosen for the p_T^Z distribution with more than 80% of statistics at low p_T^Z (< 30 GeV)?
 - Binning choices with same bin width lead to high statistical uncertainty at high p_T^Z .
 - Bin width at low p_T^Z is limited by the detector resolution.
- \Rightarrow Binning effect on these measurements needs to be quantified.

- Produce the "true" p^Z_T spectrum using a high statistical sample of one Monte-Carlo program (RESBOS).
- **(2)** Model the resolution of the p_T^Z measurement which presents the detector and QED final state radiation (FSR) effects.
- Use several binning choices for the p_T^Z spectrum and smear the "true" p_T^Z spectrum with this resolution (folding procedure) to get the reconstructed p_T^Z spectrum and the response matrix for the unfolding procedure. (binning choosen with/without the requirement of purity of the reconstructed p_T^Z).
- **(**) Unfold the reconstructed p_T^Z and then compare unfolded spectra with the "true" spectra in different cases of binning.

1. The "true" p_T^Z spectrum

• In this study, the p_T^Z "true" spectrum (0 - 380 GeV) in proton-proton collisions at $\sqrt{s} = 7$ TeV is produced by the theoretical prediction program RESBOS which can describe data within 4% at low p_T^Z (JHEP09(2014)145, Eur. Phys. J. C (2016) 76:291).

• Selections: the lepton ($\ell = e, \mu$) transverse momentum $p_T^{\ell} > 20$ GeV, the lepton pseudorapidity $|\eta^{\ell}| < 2.4$ and the invariant mass of the lepton pair 66 GeV $< m_{\ell\ell} < 116$ GeV.

PIC 2016 Quy Nhon, 17 September 2016 T.K.O. DOAN 8/2

2. Resolution of p_T^Z measurements

Resolution of p_T^Z measurements due to detector and QED FSR effects is modeled based on the information in CERN-THESIS-2013-001 and is fitted by:

- The sum of 3 Gaussian functions for the mean of the resolution: $89.1077e^{-0.5[(x+88.143)/31.2624]^2}+0.29835e^{-0.5[(x-42.8884)/11.7911]^2}+0.496752e^{-0.5[(x-113.684)/99.9182]^2}-1$
- The sum of 2 Gaussian functions for the rms of the resolution: $0.972987e^{-0.5[(x-25.5911)/9.27524]^2} + 4.06601e^{-0.5[(x-256.691)/191.119]^2}$

The "true" p_T^2 spectrum is then smeared by these resolution functions to obtain the recontructed spectrum.

(Note that this resolution was of the p_T^Z measurements at the beginning of the ATLAS data taking in Run 1 and was higher than the resolution reached by the ATLAS now).

PIC 2016 Quy Nhon, 17 September 2016 T.K.O. DOAN 9/2

3. Purity, binning and smearing (1/4)

• Purity is the fraction of events reconstructed in a particular p_T^Z bin which have true p_T^Z in the same bin.

 \Rightarrow Relating to the event migration, higher purity corresponds with lower migration \rightarrow control the unfolding procedure.

$$\mathsf{Purity} = \frac{\mathit{N}_{\mathsf{reconstructed}} \text{ and true events in the same bin}}{\mathit{N}_{\mathsf{reconstructed}} \text{ events in the bin}}$$

- Binning: 6 cases.
 - 20 bins with increasing purity (> 65%).
 - 23 bins with increasing purity (> 50%).
 - 23 bins with same bin sizes in sub-ranges.
 - 28 bins with 2.5 GeV bins at low p_T^Z .
 - 22 bins with 5 GeV bins at low p_T^Z .
 - 14 bins with 10 GeV bins at low p_T^Z .

3. Purity, binning and smearing (2/4)

3. Purity, binning and smearing (3/4)

• Smearing:

3. Purity, binning and smearing (4/4)

Smearing effect is regular for all binning choices.

4. Unfolding the reconstructed p_T^Z spectra

• Instead of measuring x one typically measures a related variable y: y = Ax, A is the response matrix describing detector effects \rightarrow need an unfolding procedure to correct for detector effects and to obtain the true spectrum.

• Iterative Bayesian unfolding (implemented in RooUnfold package):

$$\hat{\mu}_i = \frac{1}{\epsilon_i} \sum_{j=1}^m p(t_i | o_j) n_j$$

- $\hat{\mu}_i$: Number of events in truth
- ϵ_i : Efficiency

$$\frac{p(t_i|o_j)}{\sum\limits_{i=1}^{N} p(o_i|t_i)p_i} = \frac{p(o_j|t_i)p_i}{\sum\limits_{i=1}^{N} p(o_j|t_i)p_i}$$

n_j : Number of events observed

 $p(o_j|t_i)$ is the response matrix and can be inferred from Monte Carlo.

Results: 20 smooth purity bins vs 23 smooth purity bins

Results: 20 smooth purity bins vs 23 smooth purity bins

Reduce purity at low p_T^Z from 65% to 50% could increase binning effect to the level of 0.3‰ (yellow bands to show the order of effect)

Results: 23 smooth purity bins vs 23 sub-range purity bins

Different binning choices with purity in range of 50% - 65% at low p_T^Z would give the same effect.

PIC 2016 Quy Nhon, 17 September 2016 T.K.O. DOAN

Results: Same size binnings at low p_T^Z : 28 bins, 22 bins, 14 bins

Same size binnings with purity below 65% at low p_T^Z would increase binning effect.

Binning optimization based on purity and statistics would give better results.

> 65% purity binning choices - stable results

PIC 2016 Quy Nhon, 17 September 2016 T.K.O. DOAN

- Reduce purity at low p_T^Z from 65% to 50% could increase binning effect to the level of 0.3 ‰.
- Different binning choices with purity in range 50% 65% at low p_T^Z would give the same effect.
- Binning effect is negligible if purity of the p_T^Z measurement increases as function p_T^Z from 65%.

 \Rightarrow For the precise low p_T^Z measurements (permil uncertainties) with binning purity below 65%, 0.3‰ uncertainty due to the binning effect should be considered in the unfolding procedure.

Backup

p_T^Z predictions at hadron colliders

For high $p_T^Z \rightarrow$ the contribution of higher orders in α_s decreases quickly \rightarrow a perturbative calculation is applicable.

• At NLO ($O(\alpha_s)$), ($Q^2 = M_Z^2$):

$$\frac{d\sigma}{dp_T^2} = \alpha_s \Big(A \frac{\ln(Q^2/p_T^2)}{p_T^2} + B \frac{1}{p_T^2} + C(p_T^2) \Big),$$

where A and B are calculable coefficients and C is an integrable function.

Dominant contributions to the differential cross section ($Q^2 = M_Z^2$):

$$\frac{d\sigma}{dp_T^2} \sim \frac{\alpha_s}{p_T^2} \ln\left(\frac{Q^2}{p_T^2}\right) \left[v_1 + v_2 \alpha_s \ln^2\left(\frac{Q^2}{p_T^2}\right) + v_3 \alpha_s^2 \ln^4\left(\frac{Q^2}{p_T^2}\right) + \dots \right]$$

For $p_T
ightarrow$ 0, $\alpha_s \ln^2(Q^2/p_T^2)$ is large even when α_s is small

- \rightarrow the p_{T} distribution diverges.
- \rightarrow Two approaches:
- Applying resummation of leading logarithms to all orders in α_s . (RESBOS: Resummation + NLO corrected to $\mathcal{O}(\alpha_s^2)$ using K-factor)
- Or modeling by parton shower generators.

JHEP09(2014)145

Results: 20 smooth purity bins vs 23 smooth purity bins

Results: 20 smooth purity bins vs 23 smooth purity bins

Reduce purity at low p_T^Z from 65% to 50% could increase binning effect to the level of 0.3‰ (yellow bands to show the order of effect)

PIC 2016 Quy Nhon, 17 September 2016 T.K.O. DOAN

Results: 23 smooth purity bins vs 23 sub-range purity bins

Different binnings with purity in range of 50% - 65% at low p_T^Z would give the same effect.

PIC 2016 Quy Nhon, 17 September 2016 T.K.C

Results: Same size binnings at low p_T^Z : 28 bins, 22 bins, 14 bins

Same size binnings with purity below 65% at low p_T^Z would increase binning effect.

Binning optimization based on purity and statistics would give better results.

> 65% purity binning choice - stable results

Binning effect is negligible if purity of the p_T^Z measurement increases as function p_T^Z from 65%.

