Direct Dark Matter Searches

Y. Suzuki

Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo

Y. Suzuki@PIC2016 in Quy Nhon, Vietnam

Evidence of Dark Matter (DM)

- DM exists
 - Gravitational Observations (Dynamical mass >> Luminous mass)
 - Cluster of galaxies
 - Rotation curves of galaxies
 - Gravitational lensing
 - Evidence by cosmological argument
 - Large Scale Structure
 - CMB + Supernovae

Detection of Dark Matter

- We know some nature of Dark Matter
 - Neutral
 - Stable (longer than the life time of the universe)
 - Cold (maybe warm: >3 keV/ c^2 for structure formation) K.Abazajan, PRD73,063513.
 - Of very weak interaction [may be of no interaction other than Gravity]
- But we do not know what the dark matter is

Important to detect Dark Matter by other than gravitational interactions

Direct detection (DD) : Detect recoil particles produced by the Interaction of Dark Matter on ordinary matter q, f,... DN Production of Dark Matter: Indirect detection: Observe dark matter particles **Detect secondary particles** (most likely missing energy) produced by annihilation of created by a high energy dark matter particles accelerator (like LHC): 2016/9/16 **DIVI**Y. Suzuki@PIC2016 in Quy Nhon,

Galactic Dark Matter

- Observe interactions of "<u>Galactic Dark Matter</u>" directly on target materials
- A simple model: Isothermal Halo Model (standard)
 - A single component isothermal sphere with a Maxellian velocity distribution $4\pi v^2 \frac{v^2}{v^2} d$

$$f(v)dv = \frac{4\pi v^2}{(v_0^2 \pi)^{\frac{3}{2}}} e^{-\frac{v^2}{v_0^2}} dv$$

– Typical values commonly used:

Υ.

 $v_0 = 232 \text{ km/s}, \langle v^2 \rangle = 270 \text{ km/s}, \text{ escape velocity} = 550 \text{ km/s} \text{ and} \text{ density}(\rho_x) = 0.3 \text{ GeV/cm}^3$

- Values and uncertainty of these astrophysical parameters have been reevaluated and still under the discussion
- DM flux on the earth:

$$\phi \sim 10^5 / cm^2 / s \cdot (\frac{100 GeV}{m_{\chi}}) (\frac{\rho_{\chi}}{0.3 GeV / cm^3})$$

2016/9/16

Signal (Nuclear Recoil)

Signal (e/γ events)

- Some dark matter particles other than WIMPs may produce e/γ signals
 - Axio-electric effect \rightarrow electrons
 - for pseudo-scalar particles
 - ex. ALP (axion like particles)
 - E_e ~ mass of dark matter
 - Photo-electric effect ightarrow electrons
 - for vector particles (kinetic mixing)
 - ex. bosonic superWIMPs (vector)
 - E_e ~ mass of dark matter
 - Inelastic scattering of target material (ex. Xe detector (¹²⁹Xe))
 - 40 keV γ rays from de-excitation +NR
 - Luminous dark matter(PRD82, 075019)
 - Decay of DM in excited state
 - Mono-energetic γ-rays (in ~ keV?)
 - and so on....

There are varieties of DM interactions to produce e/γ signals.

Signal (Annual Variation)

- Expect annual modulation of the event rate
 - Change of the rotation velocity of the earth due to the earth's revolution

$$v_E(t(\text{days}) \approx \left[232 + 15\cos\left(2\pi \frac{t - 152.5}{365.25}\right)\right] km/s$$

- Expect O(a few \sim 10 %) modulation depending on models, energy threshold and so on

2016/9/16

Requirements for DD Detectors

Note !

Shields are also

background sources

- low radioactive background
 - Material screening /purification
 - Remove U/Th, ⁴⁰K, ⁶⁰Co, ²¹⁰Pb(Surface)...and ²²²Rn.
 - Shield /Veto (Active)
 - Cu/Pb/Teflon; <u>Water tank</u>
 - Cosmic muons /Cosmo-genic
 - Go underground
- Low energy threshold [Crucial for low mass WIMPs]
- large mass (especially for a "standard" WIMP search)
- Dark Matter detector → Target = Detector
 - Choice of target material determine the "experiment"
 - Different detector technology gives different way to reduce background

PMT (for example)

Cu bulk: ²¹⁰Pb

²²²Rn (iternal):

Kr (Internal): ⁸⁵Kr

a few ppt

~10µBq/kg

a few mBq/PMT

O(10mBq/kq)

Choice of target material and technology

- Various Detection Technologies
 - Scintillation, Heat-Phonon and Ionization
 - Usually combined technologies to reduce backgrounds
- Various material
 - Noble gas (Ar, Xe,...), Semiconductor (Si, Ge,...), Crystal (CaWO₄,...)

Recent Results of Direct WIMPs searches

For "standard WIMPs" (a few 10s of GeV/c² ~ a few TeV/c² range):

- Solid lines ⇔ New Results
 - 3 experiments (in summer, 2016): XENON100, LUX, PANDAX-II, using two phase liquid xenon technology.

~ one order of magnitude improvement

- As usual for clarity not all the experimental results are shown
- No strong evidence or indication was found so far
- All earlier claims are less likely to be indications of WIMPs
- However, the DAMA/LIBRA modulation result remains as a mystery, which will be discussed later in talking about the low mass WIMPs.

2016/9/16

Two phase liquid xenon detector

- Why two phase detector (Advantage)
 - Scalable (larger mass)
 - Good background rejection
- Elastic scattering of DM → Nuclear Recoil (NR)
 - recombination:
 primary scintillation
 light (S1)
 - remaining ionization electrons to drift: proportional scintillation light (S2)
- More recombination for NR than e/γ events
- S2/S1 to separate NR from e/γ events
 2016/9/16

BG rejection

This shows how their BG rejection works! (Example: PANDAX-II)

- NR Calibration (AmBe neutron source calib.)
 - ~3200 events
 - Determine NR median curve and detection efficiency
- Electron events calibration (Tritium (CH₃T))
 - ~2800 ER events
 - 14 events leaked blow NR median (0.5 \pm 0.1)%
 - 1/200 rejection of e/ γ events
 - Gaussian exp: 0.55%

2016/9/16

Y. Suzuki@PIC2016 in Quy Nhon, Vietnam

 $\begin{array}{c} 60 \\ 50 \\ -100 \\$

Gray: all events Red: below NR median

BG level \rightarrow Sensitivity

- Total 300 (kg) x 99 days [PANDAX-II]
 19.1 days with 15mdru + 79.6 days with 2 mdru
- dru: events/keV/kg/day

- 380 total events in FV
- 1 below NR median → 2.7 x 10⁻⁴⁶ cm² @50GeV/c²

WIMPs & two phase liquid xenon detector

- The three experiments are compared in table
- Exposure, background, threshold and so on, determine the winner
- PANDAX-II can go further.

	XENON100 (completed)	LUX 2016 (completed)	PANDAX-II
FV (kg)	48 ~ 34 kg	99 ~ 107 kg	~300 kg
Live time	477 days	332 days	99 days
Exposure(kg*day)	17,500	32,000	30,000
BG in FV (mdru) NR+e/ γ	5 - 22	3	2 -15
BG in FV (event #) NR+e/ γ			380
BG (after selection of NR)	5	4~5 ?	1 (reject: 0.5%) ~ 10 μdru
Cross section limit (cm ²)	1.1 x 10⁻⁴⁵ Suzuki@PIC2016 in Ou	2.2x 10 ⁻⁴⁶ (50GeV)	2.7x 10 ⁻⁴⁶

Other efforts for WIMPs [Liquid Ar]

- DarkSide (Double phase liq. Ar detector)
 - Advantage of Ar
 - Inexpensive
 - Superb PSD: NR vs e/γ → 10⁷
 [7ns(NR) ⇔ 1.5 μs (e/γ)]
 - Disadvantage
 - Contamination of ³⁹Ar
 - 269yr, 565keV
 - ~1 Bq/kg
 - Use underground Ar
 - But ⁴⁰Ar(n,2n)³⁹Ar even in undergr.
 - 1/1400 ³⁹Ar contamination
 - ~1 mBq/kg
- DS-50: 153kg UAr (50kg fid. Mass)
 - 2616 kg*day exposure
- → A few x 10⁻⁴⁴cm
 - Relatively high energy threshold
 - Need more reduction of BG

2016/9/16

Y. Suzuki@PIC2016 in Quy Nhon, Vietnam

Other efforts for WIMPs [Liquid Ar]

- DEEP3600 [Single phase liquid Ar Detectors]
- 1 ton fiducial (3.6t total); Ultraclean Acrylic Vessel
- e/γ events: ³⁹Ar ~1Bq/kg
 PSD: ~10⁻¹⁰ Rejection

(S2/S1 does not give large rejection factor for 2 phase detector)

$$\label{eq:Fprompt} \begin{split} F_{prompt} &= N_{prompt}/N_{total} \mbox{ (Prompt <150ns) to separate BG} \\ F_{prompt} \sim 0.8 \mbox{ for NR and } \sim 0.3 \mbox{ for e}/\gamma \end{split}$$

- Energy thresh: 20 keVee
- LAr filling completed at the end of July (2016) → taking data

Comment on Ge detector

SuperCDMS (0.6kg x15 in 3 groups)

- Select 10 best detectors
- 1700 kg*day 50-60% fid. Vol efficiency
- Threshold: 7-15 keVnr
 - Result \rightarrow expected for O(10⁻⁴⁴ cm²)

Relatively high cost

→ Challenge to make a larger mass detector
 → go low mass region as a good low threshold detector

- Surface: detect both charges one side
- Bulk: charges drift across the crystal to both surface

2016/9/16

Y. Suzuki@PIC2016 in Quy Nhon, Vietnam

Past, present and future sensitivity

Future (Standard) WIMP search

Size and BG: imprtant factor

- <u>2 phase- Xenon</u>
 - Xenon100 → XENON1T(running)
 - \rightarrow (XENONnT)
 - Lux+Zeplin → LZ [5.6 ton]
 - (Darwin[40 tons])
- <u>2 Phase-Argon</u>
 - DS-50 \rightarrow (DS-20K[20 ton])depleted Ar
- Single phase- Argon
 - DEEP3600[1 ton](running) → (DEEP-50T)
- Single phase- Xenon
 - XMASS1.5 [6 ton] → (XMASS-II[20ton])
- XMASS1.5: fiducial mass 3 tons, BG Level 1x10⁻⁵ ~ 6x 10⁻⁶ dru, threshold 2keVee.

Y. Suzuki@PIC2016 in Quy Nhon, Vietnam

Neutrino floor

- This is the place where we start to see the coherent scattering of (solar/atmospheric/RSN) neutrinos on the target nuclei (<u>irreducible</u> <u>background</u>)
- Event rate depends on
 - Exposure, Target material, Threshold and so on
- Sensitivity: does not strongly depend on the energy resolution

Neutrino floor

- Way to overcome this limit
 - Discover DM before reaching to this floor !!
 - Annual modulation
 - Dark matter maximum:
 - June 2
 - Solar neutrino maximum:
 - 3~5th of January (perihelion)
 - $-~~\sim 7\%$ annual modulation

- Directionality for dark matter recoil
 - Low density ⇔ large mass for WIMPs
 - Directionality: gas detector (a few ~ at most 10 atm)
 - example. Xenon

2016

- » 10 ton liq. Xenon → 3 m³
- » 10 ton gas xenon (10 atm) → 150 m³
 - Huge, but may not be impossible

Low mass WIMPs search

- No convincing direct evidence for WIMPs so far
- But there has been a persistent claim of a discovery of an annual modulation.

DAMA/LIBRA for 13 years of data (Nal: 100kg~ 250kg)

DAMA results

- Amplitude for 2~6 keV: 0.0116 ± 0.0013 cpd/kg/keV (9.3 σ)
- Note : they never claimed the discovery of "WIMPs"
- Possibility of electro-magnetic signals
- New Data: DAMA/LIBRA phase-II
 - New PMTs
 - Lower threshold below 2 keVee
- 2016/9/16 They will present new data next year!! Y. Suzuki@PIC2016 in Quy Nhon, Vietnam

Low mass situation

- DAMA/LIBRA annual modulation is persistent.
- Other "allowed regions" are getting weaker.
- 2 phase liq. xenon also set best limit for this region
 - They have a drastic change of the detection efficiency in low mass region
 - Large systematics

New approaches for low mass

- Both Ge detectors (superCDMS, EDELWEISS) and Crystal detector (CRESST)
 - ➔ lowering energy threshold
 - ➔ higher sensitivity for low mass
- New results from DAMIC (CCD) detector

2016 New modulation results of NR and e/y events from XMASS

24

Low mass situation

- DAMA/LIBRA annual modulation is persistent.
- Other "allowed regions" are getting weaker.
- 2 phase liq. xenon also set best limit for this region
 - They have a drastic change of the detection efficiency in low mass region
 - Large systematics

New approaches for low mass

- Both Ge detectors (SuperCDMS, EDELWEISS) and Crystal detector (CRESST)
 - ➔ lowering energy threshold
 - ➔ higher sensitivity for low mass
- New results from DAMIC (CCD) detector

2016 New modulation results of NR and e/y events from XMASS

New Rate Measurement

Ge detectors

- SuperCDMSLite (PRL116, 071301 (2016) (Low Ionization Threshold Experiment)
- Select one superCDMS detector
- <u>Operate with higher bias</u> <u>voltage to enhance phonon</u> <u>signal (Neganov-Luke effect)</u>
- Eth (ER): 56 eV
- Exposure 70 kg*day (2nd phase)
- New region 1.6 \sim 5.5 GeV/c²

Simillar efforts by EDELWEISS-III 2016/9/16 Y. Suzuki@PIC2016 in Quy

N-L effet

In incresing electric field, all the additional energy obtained by drifting electrons will be lost in a form of phonon

New Rate Measurement

CRESST (CaWO₄): phonon and Scintillation light

- Selected best crystal: 300 g
- Threshold: 307 eV
- Exposure 52kg*day, New window down to 0.5 GeV/c² (CRESST-II)

→ Will use small size of detector 24g to decrease the capacitance to lower the energy threshold to 100 eV (∆T=∆E/C) and therefore increase the sensitivity for low mass DM

New Rate Measurement

DAMIC (Dark Matter in CCDs)

- CCDs: low noise → low thresh.
 - Noise level: 1.8 electrons
 - → 5 sigma noise → 40 eV
- First result: 250µm thickness and 8 MPix, 1 g per CCD
 Phys. Lett. B711, 264 (2012).
- DAMIC-100: 674 μm, general <u>CCDs</u>, 16M Pix, 5.6g per CCD
- 18 x 5.6 g = 100.8 g
- Start commissioning, in April 16
- 0.6 kg*day exposure 2016/9/16 Y. Suzuki@PIC2016 in Quy

A search for modulation [XMASS-I]

Improtant to check DAMA results not only by "rates", but also by "modulation".

- XMASS-I: single phase liquid xenon detector with inner mass of 835 kg
- 642 low BG PMTs covering ~62% of inner surface
- <u>~ 14 photo-electrons/keV(@122keV)</u>
- Good for modulation study
 - Large mass, long exposure(> 1yr), low threshold
- Threshold for the modulation study:
 - 1.1 keVee (for this analysis)

← Scintillation efficiency in low energy

- Could be lowered in future

XMASS-I Low Mass Modulation Analysis

- 1) WIMPs analysis: A_i is constraint by the spectrum of WIMPs(m_{γ}): $A_i(m_{\gamma})$
- 2) model independent analysis: No constraint on A_i

2016/9/16

XMASS low mass modulation WIMP assumption

- Results for WIMP analysis (assuming NR and spectrum shape)
- Covered mass range between 6 and 20 GeV/c²
- Exclude almost all the DAMA allowed region @90% confidence level

XMASS low mass modulation DM model independent (e/γ signal)

Model independent analysis

- Not assuming WIMPs, no constraint on the spectrum shape
 Includes both NR and e/γ signals
- Results → Show weak negative correlation
- Two independent analyses, pull method & covariance matrix method, give similar results (1.8 \sim 2.5 σ level)

XMASS low mass modulation DM model independent (e/γ signal)

Model independent analysis

- Not assuming WIMPs, no constraint on the spectrum shape
 Includes both NR and e/γ signals
- Results → Show weak negative correlation
- Two independent analyses, pull method & covariance matrix method, give similar results (1.8 ~ 2.5 σ level)
 DAMA results are simply overlayed in above figure (red poing).
 2010 In order to compare DAMA results to XMASS results, need a Model to translate.

Examples

- WIMP-Electron Scattering (J.Kopp et al. PRD80,083502(2009))
 - The whole recoil is absorbed by the electron that is then kicked out of the atom.
 - Xe(z=54) and I (Z=53) similar event rate, but
 - Atomic shell difference must be taken into account → scale facctor

- Luminous Dark Matter (B. Feldstein et al., PRDD 82, 075019 (2010))
 - DM scattering in the Earth into the excited state and decaying back to the ground states
 - Emitting a single photon in the detector
 - Only the total <u>volume</u> affects the event rate
 - − /kg → /cm³ : ρ (Xe)/ ρ (Nal)= 2.88/3.67 = 0.78: scale factor to the DAMA data

2016/9/16

Future of low mass

- XMASS1.5[6 ton] (Modulation)
 - Lower energy threshold:
 - ~1 keVee

 - BG: expected to reduce to 1/500
 - BG < 10⁻² dru
- Future Rate measurement
 - Efforts to reach lower energy threshold (Ge & Crystal)
- Future Modulation test by Nal
 - Many attempts

Nal experiments

Confirm/reject DAMA modulation data with same target material, Nal. DAMA allowed region (90%C.I

- COSINE-100 (Korea)
 - = KIMS + DM-Ice
 - ~100 kg (8-18 kg each)
 - 2~4 dru @ 6keV
 - Will start soon
- ANAIS-112 (Canfranc)
 - 112.5 kg (proposal)
 - ANAIS-37 in progress
 - SABRE (two locations: GranSasso & Australia)
 - 40~50 kg x 2 locations
 - In preparateion

BG → easy to say, but difficult to achieve

DAMA K contamination: ~13 ppb in crystal

KIMS ~20 ppb, ANAIS ~20 – 40ppb, SABRE ~18ppb

Y. Suzuki@PIC2016 in Quy Nhon, Vietnam

*Assumed 2 dru or 4 dru flat backgrounds depending on crystals.

2016/9/16

Dark Matter searches other than WIMPs

Bosonic Super-WIMPs (e/ γ signal)

- Bosonic super-WIMPs in the mass range around 10s of keV.
 - thermally produced at the early universe
 - Energy scale is super-weak to prevent over-production
 - Can be hidden photons
- Why keV dark matter is interesting?
 - It may cure rich structures seen in a smaller scale than galaxy in a CDM simulation, which contradicts with the observation.
- Can be observed through the photo(axio)-electric effect
 - Search for mono energetic peak corresponding to a mass of the boson

Result from XMASS

- 166 days of data
- Mass range 40-120 keV
- Apply simple reduction cuts
- For vector boson
 - First results from terrestrial experiment
 - Best limit of α'/α of the vector super-WIMPs (60~100 keV)
 - <u>Rejected that all the dark matter</u> is vector super-WIMPs
- For pseudo-scalar
 - Placed stringent limit
- Results demonstrate that single phase xenon detetor has high sensitivity for e/γ signals from Dark Matter

future

- BG determines future sensitivity
- For High energy $e/\gamma O(10 \sim 100 \text{ keV})$

Need to reduce Rn

A few x 10⁻⁴ dru \rightarrow ~more than order reduction.

Summary

- Dark matter exists
- If dark matter interacts with us, we should not miss them.
- We need many [「]traps」 as much as possible
- The best limit obtained for WIMPs search is
 2.2 x 10⁻⁴⁶cm² (2.2 x 10⁻¹ zb!!)

for spin independent cross sections at 50 GeV/c².

Significant efforts have been made in exploring the low mass region.

Summary

- Standard search should continue, but
 - Complementary searches are also needed
 - e/γ signals are interesting
 - Hidden photons etc
- Hope we will detect them in near future. The task is very difficult, but extremely interesting and chances are everywhere
- Large DM search experiments becomes high risk and high return.
 - Need good by-products
 - WIMP search + Neutrinos, in ultimate DM detectors