

Latest results from the OPERA experiment

D. Duchesneau,

LAPP/CNRS, Université Savoie Mont-Blanc On behalf of the OPERA Collaboration

- Introduction
- Experimental setup: CNGS and detector
- Data Analysis and Oscillation results
 - v_{τ} appearance
 - v_{μ} disappearance
 - v_e appearance search
- Conclusions

September 16th 2016

XXXVI Gặp gỡ khoa học tại Việt Nam lần thứ 12 Physics in Collision

ICISE, QUY NHON, VIETNAM, SEPTEMBER 13 - 18, 2016

The OPERA collaboration ~ 140 physicists, 26 institutes, 11 countries

Belgium IIHE-ULB Brussels	Italy LNGS Assergi Bari Bologna	Korea Jinju	
Croatia IRB Zagreb	LNF Frascati Naples Padova	Russia INR RAS Moscow LPI RAS Moscow	
France LAPP Annecy IPHC Strasbourg	Rome Salerno	SINP MSU Moscow JINR Dubna	
Germany Hamburg	Japan Aichi Toho Kobe	Switzerland Bern	÷
Israel Technion Haifa	\$ Nagoya Nihon	Turkey METU Ankara	C*

- July 2000: Experiment proposalMay 2003: start construction at LNGS
- □ summer 2006: 1st run with cosmics and CNGS commissioning
- □ autumn 2007: CNGS beam commissioning: v interactions seen in the OPERA target
- □ July 2008: Emulsion target completed: start of v physics run
- \Box Dec. 2012: End of v physics run

CNGS/OPERA: European long baseline v project:

- motivated by the **atmospheric v disappearance** results and the evidence of neutrino oscillation in 1998
- 3-flavour oscillation formalism (PMNS matrix) describes with success the major results from solar, atmospheric, reactor and neutrino beam experiments
 - > Many results from v disappearance $(v_e, v_\mu, \overline{v}_\mu, \overline{v}_e)$
 - => Oscillation picture should be tested in **different** v **flavour appearance mode**

LNGS

In the CERN high energy v_{μ} beam (CNGS): $P(v_{\mu} \rightarrow v_{\tau}) \approx \cos^4(\theta_{13}) \sin^2(2\theta_{23}) \sin^2(1.27 \frac{\Delta m_{23}^2 L}{L})$

• search for direct v_{τ} appearance at the Gran Sasso underground laboratory (730 km from CERN)

• by-product analysis: search for $v_{\mu} \rightarrow v_{e}$ and put constraints on non standard oscillation

OPERA

CNGS: CERN Neutrinos to Gran Sasso

Conventional v beam: 400 GeV protons from SPS •2 fast extractions (10.5 μ s), separated by 50 ms / SPS cycle (6 s) => 2 10¹³ protons/extraction => Average beam power: 160 kW (peak: 480 kW)

 v_{μ} flux optimized to maximize the v_{τ} charged current interactions

$\langle \mathbf{E} \rangle_{\mathbf{v}}$	17 GeV
$(v_{e} + \overline{v_{e}})CC / v_{\mu CC}$	0.9 %
$\overline{\nu_{\mu}}_{CC}$ / $\nu_{\mu CC}$	2.1 %
v_{τ} prompt	negligible

CNGS operation: $2008 \implies 2012$ total intensity delivered: 1.8×10^{20} p.o.t. LNGS: Gran Sasso National Laboratory (Italy, 120 km from Rome)

Underground laboratory:

good cosmic ray shielding 1 cosmic $\mu/m^2/hr$ 3 large experimental halls (100 m x 20 m x 18 m) directed towards CERN

Experimental signature for v_{τ} appearance:

 \sim detect and identify the v_{τ} charged current (CC) events **OPERA** principle: hybrid detector with modular structure direct observation of τ decay topology ECC brick $\rightarrow \mu m$ resolution: photographic emulsions _{1 mm} electronic \rightarrow large target mass: alternate emulsion trackers films and lead sheets Pb emulsion layers interface films (CS) reject main topological background: charm production

 \rightarrow good muon id and charge reconstruction: use electronic detectors also for trigger and event localisation

1.25 kton detector at Gran Sasso (Hall C)

SM'

2 identical Super Modules (SM)

> Veto plane (glass RPC)

Target and Target Tracker (6.7 m)²

• Target : 74500 bricks, 26 walls

• Target tracker : 31 XY doublets of 256 scintillator strips + WLS fibres + multianodes PMT

High precision tracker
6 4-fold layers of drift tubes Instrumented dipole magnet
1.53 *T*22 XY planes of RPC

Muon spectrometer (8×9 m²)

OPERA target: Modular detector: basic unit brick

OPERA event analysis

ν

Scan about 10 films around vertex: Track reconstruction in several films

Reject passing-through and short tracks

Search tracks pointing to an interaction vertex \rightarrow Decay Search procedure

Data sample

total intensity collected: 17.97x10¹⁹ p.o.t.

Year	Protons on target	SPS Eff.	Beam days	v interactions
2008	1.74x10 ¹⁹	61%	123	1931
2009	3.53x10 ¹⁹	73%	155	4005
2010	4.09x10 ¹⁹	80%	187	4515
2011	4.75x10 ¹⁹	79%	243	5131
2012	3.86x10 ¹⁹	82%	257	3923

20% less than the experiment proposal value (22.5×10^{19} p.o.t.)

$$\varepsilon_{\text{trigger}} = 99\%$$

- •106 422 on time events recorded
- •60% are external rock events

•20% are spectrometer interactions

19505 recorded v interactions in the OPERA target83% are reconstructed in the target

Event classification	Performed analysis	# of Decay Searched events
0μ	1 st +2 nd brick	1144
1μ (P _μ < 15 GeV)	1 st +2 nd brick	4264
All		5408

Charmed hadron production

2008-2010 data analysis

Eur.Phys.J. C74 (2014) 2986

Charm topology similar to τ (decay

Control sample for decay search and ε

Background, mostly from hadronic

modes and lifetime) but μ at

interaction vertex

interactions

Topology	Observed	Expected events		
	events	Charm	Background	Total
Charged 1-prong	19	21 ± 2	9 ± 3	30 ± 4
Neutral 2-prong	22	14 ± 1	4 ± 1	18 ± 2
Charged 3-prong	5	4 ± 1	1.0 ± 0.3	5±1
Neutral 4-prong	4	0.9 ± 0.2	< 0.1	0.9 ± 0.2
Total	50	40±3	14 ± 3	54±4

Angle in the transverse plane

between μ and parent

$\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation analysis: Background

- v_{μ} CC charm production (4% of CC), with μ mis-id'd (similar lifetime, missing E_{T} decays)
- Large-angle coulomb scattering of μ
- nuclear interactions of hadrons (0.2% of NC)

Kinematical analysis

variables to reduce background:

- Flight length
- Total p_T of τ daughters wrt τ direction

 ν_{μ}

 Φ = angle of τ wrt hadronic shower in transverse plane to beam

ν_{µ,e}

 μ^{-}

 p^{miss}_{T} : vectorial sum of the transverse momenta of primaries (except the parent) and daughters wrt beam direction

u~.e

h+

 p^{2ry}_{T} : transverse momentum of the daughter wrt the parent direction

v_{τ} events observed in OPERA

$v_{\mu} \rightarrow v_{\tau}$ oscillation analysis results:

Decay channel	Expected background				expected signal events	Observed
	Charm	Had. Re- interaction	Large µ scattering	Total	$\Delta m^2 = 2.44 \times 10^{-3} eV^2$	events
$\tau \rightarrow 1h$	0.017±0.003	0.022 ± 0.006	-	0.04±0.01	0.52±0.10	3
$\tau \rightarrow 3h$	0.17 ± 0.03	0.003 ± 0.001	-	0.17±0.03	0.73±0.14	1
$ au ightarrow \mu$	0.004 ± 0.001	-	0.0002±0.0001	0.004±0.001	0.61±0.12	1
$\tau \rightarrow e$	0.03±0.01	-	-	0.03±0.01	0.78±0.16	0
Total	0.22 ± 0.04	0.02 ± 0.01	0.0002±0.0001	0.25±0.05	2.64 ± 0.53	5

Probability to be explained by background fluctuation $p = 1.1 \times 10^{-7}$

No oscillation hypothesis excluded at 5.1 σ

 $\Delta m_{23}^2 = 3.3 \text{ x } 10^{-3} \text{ eV}^2$ with a 90% confidence interval [2.0, 5.0] x 10⁻³ eV² (assuming full mixing)

Probability of observing ≥ 5 candidates (2.9 S+B events expected): 17% Frequency of configurations being less probable than the observed one: 6.4%

v_{μ} disappearance

- Full data sample (2008-2012)
- Use of electronic detector data only and separation between CC and NC like events

NC-like/CC-like ratio vs. E_#

To reduce systematic effects coming from the beam uncertainty (no near detector), NC like over CC like ratio is used

a fit using NC-like/CC-like ratio in which all mixing parameters are fixed to the PDG values but Δm_{23}^2

reweighting MC according to oscillation probability and minimizing χ^2 between MC and data

systematics under study

 \Rightarrow Preliminary measurement of Δm_{23}^2

 \Rightarrow consistent with the world average and the internal OPERA appearance results

$v_{\rm e}$ appearance search

2008-2012 sample (17.97 x 10¹⁹ p.o.t.)

 \rightarrow Observed 34 v_e events

Expected v_e events :

Number of events / 10 GeV

7

20

 v_e beam contamination 36.7 ± 5

Background $\tau \rightarrow e + mis - id' d \pi^0 \quad 1.2 \pm 0.1$

sterile neutrino search

appearance probability modified by one possible extra (sterile) state (3+1 scheme)

 $\nu_{\mu} \rightarrow \nu_{e}$

Analysis to be updated with full ν_e sample and 3+1framework

Summary and outlook

- OPERA has recorded events corresponding to 18.0 x 10¹⁹ p.o.t. delivered by the CNGS beam from 2008 to 2012 (80% of the nominal)
- Scanning ("second data-taking") and analysis mostly completed!
- $v_{\mu} \rightarrow v_{\tau}$ oscillation analysis: 5 candidates observed for 0.25 background expected => discovery with 5.1 σ significance (PRL 115 (2015) 121802) => $\Delta m_{23}^2 = 3.3 \times 10^{-3} \text{ eV}^2$ with a 90% confidence interval [2.0, 5.0] $\times 10^{-3} \text{ eV}^2$
- v_{μ} disappearance analysis: => preliminary Δm_{32}^2 consistent with world average
- $v_{\mu} \rightarrow v_{e}$ oscillation search: Number of events observed in agreement with expected background + standard oscillation
- Sterile v oscillation constraints from v_e and v_{τ} studies
- **Prospects:**
 - re-analysis of the data with looser selection and multivariate analysis: more signal and background but significant statistical gain
 - => estimation of oscillation parameters and couplings with the tau appearance
 - Exploiting the unique feature of being able to identify all three neutrino flavours: v_{τ} appearance + v_{e} appearance + v_{μ} disappearance data
 - => Constraints on the oscillation parameters with one single experiment

The end

 $\nu_{_{\mu}}$ \rightarrow $\nu_{_{\tau}}$: preliminary results on sterile ν

v event with 3 vertices

Sample	Expected events (10^{-3})
ν_{τ} CC + charm	45
$\nu_{\mu} \text{ CC} + \text{charm} + h_{\text{int}}$	21
$\nu_{\mu} \text{ NC} + c\bar{c}$	13
$\nu_{\tau} \text{ CC} + h_{\text{int}}$	9
$ u_{\mu} \operatorname{CC} + 2h_{\operatorname{int}} $	4
$\nu_{\mu} \text{ NC} + 2h_{\text{int}}$	4
Total	100

Rates after topological selection (a first short decay in two prongs and the a long decay in one prong)

variable	value
1pr-like daughter momentum	$2.7 ~{ m GeV}/c$
1pr-like daughter transverse momentum	$0.242 ~{ m GeV}/c$
Kink angle	90 mrad
1pr-like flight length	1.16 mm
2pr-like daughters momentum	$6.17~{ m GeV}/c$
2pr-like daughters transverse momentum	$0.542~{ m GeV}/c$
2pr-like invariant mass	$1.86 \text{ GeV}/c^2$
2pr-like flight length	$103~\mu{ m m}$
Total EM energy	12.5 GeV
φ angle	2.41 rad
Missing transverse momentum	0.944 GeV/c
Other hadronic momentum	$0.850~{ m GeV}/c$
ANN output	0.946

v_{τ} analysis: kinematical selection

variable	$\tau \to 1 h$	$\tau \to 3h$	$\tau \to \mu$	$\tau \to e$
lepton-tag	No μ or e at the primary vertex			:
$z_{ m dec} \ (\mu { m m})$	[44, 2600]	< 2600	[44, 2600]	< 2600
$p_T^{ m miss}~({ m GeV}/c)$	$< 1^{\star}$	$< 1^{\star}$	/	/
ϕ_{lH} (rad)	$>\pi/2^{\star}$	$>\pi/2^{\star}$	/	/
p_T^{2ry} (GeV/c)	$> 0.6(0.3)^*$	/	> 0.25	> 0.1
$p^{2ry} (\text{GeV}/c)$	> 2	> 3	>1 and <15	>1 and <15
$\theta_{\rm kink} \ ({\rm mrad})$	> 20	< 500	> 20	> 20
$m, m_{\rm min}~({\rm GeV}/c^2)$	/	$>~0.5~{\rm and}<~2$	/	/

First v_{τ} candidate (event 9234119599, taken on 22/08/2009)

26

Second v_{τ} candidate (event 11113019758, taken on 23/04/2011)

JHEP 11 (2013) 036

Third v_{τ} candidate (event 12123032048, taken on 2/05/2012)

Decay in the plastic base

PHI ANGLE

MUON MOMENTUM

VARIABLE	VALUE
Kink angle (mrad)	245 ± 5
decay length (µm)	376 ± 10
Pμ (GeV/c)	2.8 ± 0.2
Pt (MeV/c)	690±50
φ (degrees)	154.5 ± 1.5

Fourth v_{τ} candidate

VARIABLE	AVERAGE
Kink angle (mrad)	245 ± 5
decay length (µm)	376 ± 10
Pμ (GeV/c)	2.8 ± 0.2
Pt (MeV/c)	690±50
φ (degrees)	154.5 ± 1.5

PTEP (2014) 101C01

$\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation analysis results:

 $\Delta m_{23}^2 = 3.3 \times 10^{-3} \text{ eV}$ with a 90% confidence interval [2.0, 5.0] $\times 10^{-3} \text{ eV}^2$ OPERA (τ a (assuming full mixing)

using profile likelihood, Feldman-Cousins, Bayesian statistics, the difference among the methods negligible

