Thin n-in-p planar pixel sensor productions at MPP

Natascha Savić

L. Bergbreiter, J. Breuer, A. La Rosa, A. Macchiolo, R. Nisius, S. Terzo

27th RD50 Workshop, CERN December 2nd-4th 2015

Overview

- New ADVACAM production for thin n-in-p planar pixels sensors with active edges
 - sensor thicknesses: 50, 100 and 150 µm
- Test-beam studies with n-in-p planar pixels in (un-) irradiated modules
 - with different implementations of punch-through designs
 - with 25x500 µm² pitch pixels with external punch-through structure

- Grazing angle studies with n-in-p planar pixels
 - (un-) irradiated module at high Φ (80° incidence angle (η ~2.4))

New ADVACAM production

ADVACAM Production

- Second production of active edge pixels at ADVACAM
- 15 6" wafers on p-type FZ material
- Thickness 50, 100 and 150 µm

In collaboration with Glasgow, Göttingen, LAL, CLIC CERN-LCD and Geneva University for medical applications

Different structures of bias ring and punch-through

FE-I4 with 50 μm edge, one GR, no punch-through structure

Active edge

100 µm edge,
Bias Ring + Guard Ring,
std punch-through structure

100 µm edge, Bias Ring, new external punch-through structure

100 µm edge, Bias Ring, std punch-through structure

Measurements of slim edge sensors of different thickness

Max-Planck-Institut für Physil

Inactive edge = 100 µm

- V_{depl} ~10 V for d=50 μ m
- V_{depl} ~ 15 V for d=100 μm
 - IV measured on bare FE-I4 sensors with 100 µm edge at ADVACAM

NDVACAM

Modules with Au/Cu UBM showed best performance

[nA/cm2]

Optimization of different punch-through designs

Test-beam studies of different sensor designs

Test beam set-up of ITK test-beam July 2015

ACONITE telescope of the AIDA/EUDET family

Data analysis sequence

- Test-beam at CERN with 120 GeV protons
- Track reconstruction done with EUTelescope software
- Track analysis done with Thmon2

CIS3 Production

- First 6" production at CiS
- 6" wafers on p-type FZ material
- Thickness : 265 270 μm

 CiS3 standard FE-I4 pitch with modified punch-through structures

Pixel size : 50x250 μm²

Pixel matrix : 80x336

 CiS3 modified FE-I4 with 25 μm r-Φ pitch

Pixel size : 25x500 μm²

Pixel matrix : 40x672

RD50 project: 2012/01

Different punch-through designs

ndividual p-t

50x250 µm² pixel pitch

Standard punch-through

Bias line over punchthrough dot

Bias line over center of pixel implant

25x500 µm² pixel pitch

Different punch-through designsin-pixel hit efficiency

Irradiated at 5 ⋅10¹⁵ n_{eq}/cm², U=500 V

100 % hit efficiency before irradiation

Novel punch-through design for 25x500 µm pitch

- In-pixel hit efficieny of irradiated CiS3 at 5 ·10¹⁵ n_{ea}/cm² Module with common punch through structure for 4 pixels
- Efficiency obtained at highest voltage (800 V): 98.0 ± 0.3 %

Module thickness: 270 µm

Standard pt : 93.9 %

(96.5 %)

i. Bias line over pt dot :

94.9 % (97.3 %)

iii. Bias line over center:

89.0 % at 5.10¹⁵ (92.7 %)

iv. Common pt for four pixels:

96.0 % (99.0 %)

 $\Delta \epsilon = 0.3 \%$

at 3.1015

New design for sensors compatible with the RD53 chip

Punch-through design adopted from the two best performing ones: combination of biasline over p-t dot and common p-t

25x100 µm² pixel pitch

- Pixel staggered in such way to be compatible with a regular 50x50 µm² grid on the chip
- Design based on the existing prototype with 25x500 µm² pitch (results shown before)

New production on SOI wafers starting at MPG-HLL with 100 and 150 µm active thickness

Efficiencies at different thicknesses

Standard pt-t design in FE-I4 with different thicknesses

Newly added! Sensor thickness of 270 µm

- Thinner sensors show higher efficiency at same level or irradiation
- Saturation of hit efficiency at higher voltages for thicker sensors
- Newly tested thickest FE-I4 (270 µm thickness) appears to be least efficient

Efficiencies at different temperatures

Efficiencies of different punch-through designs at 500 V :

i.	Standard pt :	93.9 %		(94.8 %)	
ii.	Bias line over pt dot :	94.9 %		(94.3 %)	-4 4000
iii.	Bias line over center :	89.0 %	at -50°C	(89.7 %)	at -40°C

iv. Common pt for four pixels: 98.0 % (at 600 V) (97.7 %)

 $\Delta \epsilon = 0.3 \%$

Grazing angle technique employing modules with a 50x250 µm² pixel pitch

Testbeam studies of tracking at high Φ

Not irradiated reference module

Irradiated DUT, 200 µm thick

High Φ set-up with an n-in-p FE-I4 module at high Φ (80°), not irradiated and irradiated at 2 ·10¹⁵ n_{eq}/cm² at KIT and a reference plane, perpendicular to the beam

50 µm **Front** 200 µm Back side of sensor beam

Distribution of cluster width

Max-Planck-Institut für Phys

 Cluster size dependant on sensor thickness -> smaller cluster width for thinner sensors

Example on cluster width for 200 µm thick sensor

Geometry :

200 µm thickness, 50x250 µm² pitch, placed at 80° in r-phi

Expected cluster width from geometry ~ 24

Cluster width = 24
Cluster separation = 3
3 not hit pixels XXX

Mean cluster width y

25

20

15

10

10

50 μm

50

60

70

80

ϑ [deg]

90

beam Back side of sensor

Cluster width y for different sensor thicknesses

Active thickness — 250 µm

230 um

150 um

100 µm

30

Charge Collection and Efficiencies at high Φ:

not irradiated modules

- Constant charge collection for not irradiated modules
- Slight decrease of CCE and pixel efficiency on sensor front side for thicker module

Higher efficiency for thinner sensor

Charge Collection and Efficiencies at high Φ : irradiated module at 2 •10¹⁵ n_{eq}/cm^2

- Charge and Efficiency vs pixel number and depth at 300 V up to 800 V for a cluster width of 24 (module thickness 200 μm)
- Tuning of CiS2 module : threshold 1000 e, 6 ToT @ 4 ke

- Flatter charge collection and pixel efficiency for higher voltages
- Decrease of charge collection and pixel efficieny on sensor back- and front side
 Plan to repeat the measurements after irradiation for thinner sensors

Summary and Outlook

- New ADVACAM production for thin active edge sensors
- Encouraging results up to now
- Further characterization campaign in the upcoming weeks
- Testbeam studies
- Different punch-through designs show different efficiencies:
 - Improved hit efficiency with respect to the standard design especially for the external p-t (99.4 % at 3 $\cdot 10^{15}$ n_{eq}/cm^2 and 97.75 % at 5 $\cdot 10^{15}$ n_{eq}/cm^2 cm²!) and the biasline over the p-t (97.3 % at $3 \cdot 10^{15}$ n_{eq}/cm^2 and 94.9 % at 5 · 10^{15} n_{eq}/cm²!)
- Grazing angle studies
- Charge collection constant throughout the sensor depht
- Plan to repeat the measurements after irradiation for thinner sensors

Thank you for your attention!

Back-up

Source Scans with Cadmium

- Modules with Pt UBM are more noisy and show disconnected corners
- Modules with Au/Cu UBM have very good performance
- No BCB implemented in this production
 - need parylene coating before irradiation

Thin film Pt UBM

Hit efficiency map of different punch-through structures

 Sensor with 3 different punchthrough designs (every ten columns):

C30-40 : standard

C40-50 : bias line over punchthrough dot

C50-60 : bias line over center of pixel implant

 Differing efficiencies depending on punch-through structure

For comparison: hit efficiency vs column of the same module, but unirradiated ->

Lab studies: Charge at different temperatures

- Charge collection of one module irradiated at a fluence of 3e15 n_{eg}/cm² at KIT and at temperatures of -50°C, -40°C, -30°C and -25°C (module retuned for each temperature step)
- Charge collection with Strontium source scan at a voltage of 500 V

Natascha Savić –Thin n-in-p planar pixel sensor production at MPP

→ Collected charge does not vary with temperature

Distribution of cluster widths

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- Cluster width distribution at 200 V to 800 V
- Expected cluster width from geometry ~ 24
- Geometry :

200 µm thickness, 50x250 µm² pitch, placed at 80° in r-phi

200 µm

50 µm